These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 35542137)
1. Retracted Article: Computational fluid dynamics modeling of the millisecond methane steam reforming in microchannel reactors for hydrogen production. Chen J; Gao X; Yan L; Xu D RSC Adv; 2018 Jul; 8(44):25183-25200. PubMed ID: 35542137 [TBL] [Abstract][Full Text] [Related]
2. Compact Steam-Methane Reforming for the Production of Hydrogen in Continuous Flow Microreactor Systems. Chen J; Song W; Xu D ACS Omega; 2019 Sep; 4(13):15600-15614. PubMed ID: 31572861 [TBL] [Abstract][Full Text] [Related]
3. A Review of the CFD Modeling of Hydrogen Production in Catalytic Steam Reforming Reactors. Ghasem N Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555702 [TBL] [Abstract][Full Text] [Related]
4. Numerical study on the effect of discrete catalytic layer arrangement on methane steam reforming performance. Wang H; Yang G; Li S; Shen Q; Li Z; Chen B RSC Adv; 2021 Jan; 11(5):2958-2967. PubMed ID: 35424244 [TBL] [Abstract][Full Text] [Related]
5. Retraction: Computational fluid dynamics modeling of the millisecond methane steam reforming in microchannel reactors for hydrogen production. Chen J; Gao X; Yan L; Xu D RSC Adv; 2021 Mar; 11(21):12531. PubMed ID: 35427058 [TBL] [Abstract][Full Text] [Related]
6. Integration of Methane Steam Reforming and Water Gas Shift Reaction in a Pd/Au/Pd-Based Catalytic Membrane Reactor for Process Intensification. Castro-Dominguez B; Mardilovich IP; Ma LC; Ma R; Dixon AG; Kazantzis NK; Ma YH Membranes (Basel); 2016 Sep; 6(3):. PubMed ID: 27657143 [TBL] [Abstract][Full Text] [Related]
7. Recent Advances in Bimetallic Catalysts for Methane Steam Reforming in Hydrogen Production: Current Trends, Challenges, and Future Prospects. Yusuf BO; Umar M; Kotob E; Abdulhakam A; Taialla OA; Awad MM; Hussain I; Alhooshani KR; Ganiyu SA Chem Asian J; 2024 Aug; 19(16):e202300641. PubMed ID: 37740712 [TBL] [Abstract][Full Text] [Related]
8. High yields of hydrogen production from methanol steam reforming with a cross-U type reactor. Zhang S; Zhang Y; Chen J; Zhang X; Liu X PLoS One; 2017; 12(11):e0187802. PubMed ID: 29121067 [TBL] [Abstract][Full Text] [Related]
9. A MEMS methanol reformer heated by decomposition of hydrogen peroxide. Kim T; Hwang JS; Kwon S Lab Chip; 2007 Jul; 7(7):835-41. PubMed ID: 17594001 [TBL] [Abstract][Full Text] [Related]
10. Design and operation performance of the plate-heat transfer type hydrogen production reactor for bio-methanol reforming. Liu H; Li Y; Lu C; Zhang Z; Xiang G; Yang X; Zhang Q Bioresour Technol; 2023 Oct; 386():129509. PubMed ID: 37473786 [TBL] [Abstract][Full Text] [Related]
11. Model Development and Exergy Analysis of a Microreactor for the Steam Methane Reforming Process in a CFD Environment. Rahman ZU; Ahmad I; Kano M; Mustafa J Entropy (Basel); 2019 Apr; 21(4):. PubMed ID: 33267112 [TBL] [Abstract][Full Text] [Related]
13. Process analysis of solar steam reforming of methane for producing low-carbon hydrogen. Shagdar E; Lougou BG; Shuai Y; Ganbold E; Chinonso OP; Tan H RSC Adv; 2020 Mar; 10(21):12582-12597. PubMed ID: 35497614 [TBL] [Abstract][Full Text] [Related]
14. Ceramic microreactors for on-site hydrogen production from high temperature steam reforming of propane. Christian MM; Kenis PJ Lab Chip; 2006 Oct; 6(10):1328-37. PubMed ID: 17111577 [TBL] [Abstract][Full Text] [Related]
15. One-dimensional modeling of heterogeneous catalytic chemical looping steam methane reforming in an adiabatic packed bed reactor. Qayyum H; Cheema II; Abdullah M; Amin M; Khan IA; Lee EJ; Lee KH Front Chem; 2023; 11():1295455. PubMed ID: 38053671 [TBL] [Abstract][Full Text] [Related]
16. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
17. Intensification of Dry Reforming of Methane on Membrane Catalyst: Confirmation and Development of the Hypothesis. Gavrilova N; Gubin S; Myachina M; Sapunov V; Skudin V Membranes (Basel); 2022 Jan; 12(2):. PubMed ID: 35207057 [TBL] [Abstract][Full Text] [Related]
18. Effect of catalytic cylinders on autothermal reforming of methane for hydrogen production in a microchamber reactor. Yan Y; Guo H; Zhang L; Zhu J; Yang Z; Tang Q; Ji X ScientificWorldJournal; 2014; 2014():451919. PubMed ID: 25097877 [TBL] [Abstract][Full Text] [Related]
19. Performance, Efficiency, and Flexibility Analysis of a High-Temperature Proton Exchange Membrane Fuel Cell-Based Micro-Combined Heat-and-Power System with Intensification of the Steam Methane Reforming Step by Using a Millistructured Reactor. Wu D; Commenge JM; Fort E; Hardy C; Pecquery J; Falk L ACS Omega; 2023 Jun; 8(23):20589-20610. PubMed ID: 37323395 [TBL] [Abstract][Full Text] [Related]
20. Optimization of a renewable hydrogen production system from food waste: A combination of anaerobic digestion and biogas reforming. Park MJ; Kim HM; Lee YH; Jeon KW; Jeong DW Waste Manag; 2022 May; 144():272-284. PubMed ID: 35421707 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]