These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 35542139)

  • 1. Additive manufacturing technique-designed metallic porous implants for clinical application in orthopedics.
    Gao C; Wang C; Jin H; Wang Z; Li Z; Shi C; Leng Y; Yang F; Liu H; Wang J
    RSC Adv; 2018 Jul; 8(44):25210-25227. PubMed ID: 35542139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review.
    Wang X; Xu S; Zhou S; Xu W; Leary M; Choong P; Qian M; Brandt M; Xie YM
    Biomaterials; 2016 Mar; 83():127-41. PubMed ID: 26773669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porous Scaffold Design for Additive Manufacturing in Orthopedics: A Review.
    Chen H; Han Q; Wang C; Liu Y; Chen B; Wang J
    Front Bioeng Biotechnol; 2020; 8():609. PubMed ID: 32626698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Additive manufacturing of Zn-Mg alloy porous scaffolds with enhanced osseointegration: In vitro and in vivo studies.
    Qin Y; Liu A; Guo H; Shen Y; Wen P; Lin H; Xia D; Voshage M; Tian Y; Zheng Y
    Acta Biomater; 2022 Jun; 145():403-415. PubMed ID: 35381400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metallic additive manufacturing for bone-interfacing implants.
    Sarker A; Leary M; Fox K
    Biointerphases; 2020 Sep; 15(5):050801. PubMed ID: 32942863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility.
    Tan XP; Tan YJ; Chow CSL; Tor SB; Yeong WY
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():1328-1343. PubMed ID: 28482501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Critical Review of Additive Manufacturing Techniques and Associated Biomaterials Used in Bone Tissue Engineering.
    Wu Y; Lu Y; Zhao M; Bosiakov S; Li L
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitution.
    Putra NE; Mirzaali MJ; Apachitei I; Zhou J; Zadpoor AA
    Acta Biomater; 2020 Jun; 109():1-20. PubMed ID: 32268239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatigue and dynamic biodegradation behavior of additively manufactured Mg scaffolds.
    Wang Y; Huang H; Jia G; Zeng H; Yuan G
    Acta Biomater; 2021 Nov; 135():705-722. PubMed ID: 34469790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs.
    Sing SL; An J; Yeong WY; Wiria FE
    J Orthop Res; 2016 Mar; 34(3):369-85. PubMed ID: 26488900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Additively Manufactured Scaffolds for Bone Tissue Engineering and the Prediction of their Mechanical Behavior: A Review.
    Zhang XY; Fang G; Zhou J
    Materials (Basel); 2017 Jan; 10(1):. PubMed ID: 28772411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational design, bio-functionalization and biological performance of hybrid additive manufactured titanium implants for orthopaedic applications: A review.
    Li J; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    J Mech Behav Biomed Mater; 2020 May; 105():103671. PubMed ID: 32090892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous Tantalum and Titanium in Orthopedics: A Review.
    Han Q; Wang C; Chen H; Zhao X; Wang J
    ACS Biomater Sci Eng; 2019 Nov; 5(11):5798-5824. PubMed ID: 33405672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Additive manufacturing of biodegradable metals: Current research status and future perspectives.
    Qin Y; Wen P; Guo H; Xia D; Zheng Y; Jauer L; Poprawe R; Voshage M; Schleifenbaum JH
    Acta Biomater; 2019 Oct; 98():3-22. PubMed ID: 31029830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Additively manufactured metallic biomaterials.
    Davoodi E; Montazerian H; Mirhakimi AS; Zhianmanesh M; Ibhadode O; Shahabad SI; Esmaeilizadeh R; Sarikhani E; Toorandaz S; Sarabi SA; Nasiri R; Zhu Y; Kadkhodapour J; Li B; Khademhosseini A; Toyserkani E
    Bioact Mater; 2022 Sep; 15():214-249. PubMed ID: 35386359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A systematic review of preclinical in vivo testing of 3D printed porous Ti6Al4V for orthopedic applications, part I: Animal models and bone ingrowth outcome measures.
    Spece H; Basgul C; Andrews CE; MacDonald DW; Taheri ML; Kurtz SM
    J Biomed Mater Res B Appl Biomater; 2021 Oct; 109(10):1436-1454. PubMed ID: 33484102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microstructure and mechanical properties of porous titanium structures fabricated by electron beam melting for cranial implants.
    Moiduddin K
    Proc Inst Mech Eng H; 2018 Feb; 232(2):185-199. PubMed ID: 29332500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functionally graded additive manufacturing for orthopedic applications.
    Rouf S; Malik A; Raina A; Irfan Ul Haq M; Naveed N; Zolfagharian A; Bodaghi M
    J Orthop; 2022; 33():70-80. PubMed ID: 35874041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Review of the Applications of Additive Manufacturing Technologies Used to Fabricate Metals in Implant Dentistry.
    Revilla-León M; Sadeghpour M; Özcan M
    J Prosthodont; 2020 Aug; 29(7):579-593. PubMed ID: 32548890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal Material, Properties and Design Methods of Porous Biomedical Scaffolds for Additive Manufacturing: A Review.
    Lv Y; Wang B; Liu G; Tang Y; Lu E; Xie K; Lan C; Liu J; Qin Z; Wang L
    Front Bioeng Biotechnol; 2021; 9():641130. PubMed ID: 33842445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.