These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35542321)

  • 1. Biomimetic cellulose/calcium-deficient-hydroxyapatite composite scaffolds fabricated using an electric field for bone tissue engineering.
    Kim M; Yeo M; Kim M; Kim G
    RSC Adv; 2018 Jun; 8(37):20637-20647. PubMed ID: 35542321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electric-field assisted 3D-fibrous bioceramic-based scaffolds for bone tissue regeneration: Fabrication, characterization, and in vitro cellular activities.
    Kim M; Yun HS; Kim GH
    Sci Rep; 2017 Jun; 7(1):3166. PubMed ID: 28600540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium-Deficient Hydroxyapatite/Collagen/Platelet-Rich Plasma Scaffold with Controlled Release Function for Hard Tissue Regeneration.
    Lee J; Kim G
    ACS Biomater Sci Eng; 2018 Jan; 4(1):278-289. PubMed ID: 33418694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D multi-layered fibrous cellulose structure using an electrohydrodynamic process for tissue engineering.
    Kim M; Kim G
    J Colloid Interface Sci; 2015 Nov; 457():180-7. PubMed ID: 26164251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic mineralization of novel hydroxyethyl cellulose/soy protein isolate scaffolds promote bone regeneration in vitro and in vivo.
    Wu M; Wu P; Xiao L; Zhao Y; Yan F; Liu X; Xie Y; Zhang C; Chen Y; Cai L
    Int J Biol Macromol; 2020 Nov; 162():1627-1641. PubMed ID: 32781127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradable calcium deficient hydroxyapatite/poly(lactic-glycolic acid copolymer) bilayer scaffold through integral molding 3D printing for bone defect repair.
    Wu N; Liu J; Ma W; Dong X; Wang F; Yang D; Xu Y
    Biofabrication; 2021 Mar; 13(2):. PubMed ID: 33202398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteogenesis by foamed and 3D-printed nanostructured calcium phosphate scaffolds: Effect of pore architecture.
    Barba A; Maazouz Y; Diez-Escudero A; Rappe K; Espanol M; Montufar EB; Öhman-Mägi C; Persson C; Fontecha P; Manzanares MC; Franch J; Ginebra MP
    Acta Biomater; 2018 Oct; 79():135-147. PubMed ID: 30195084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensional Hierarchical Nanofibrous Collagen Scaffold Fabricated Using Fibrillated Collagen and Pluronic F-127 for Regenerating Bone Tissue.
    Lee J; Kim G
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):35801-35811. PubMed ID: 30260631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of direct loading of phytoestrogens into the calcium phosphate scaffold on osteoporotic bone tissue regeneration.
    Tripathi G; Raja N; Yun HS
    J Mater Chem B; 2015 Nov; 3(44):8694-8703. PubMed ID: 32262726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo approach of calcium deficient hydroxyapatite filler as bone induction factor.
    Cardoso GBC; Tondon A; Maia LRB; Cunha MR; Zavaglia CAC; Kaunas RR
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():999-1006. PubMed ID: 30889775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic Mineralization of Three-Dimensional Printed Alginate/TEMPO-Oxidized Cellulose Nanofibril Scaffolds for Bone Tissue Engineering.
    Abouzeid RE; Khiari R; Beneventi D; Dufresne A
    Biomacromolecules; 2018 Nov; 19(11):4442-4452. PubMed ID: 30301348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous composite scaffold incorporating osteogenic phytomolecule icariin for promoting skeletal regeneration in challenging osteonecrotic bone in rabbits.
    Lai Y; Cao H; Wang X; Chen S; Zhang M; Wang N; Yao Z; Dai Y; Xie X; Zhang P; Yao X; Qin L
    Biomaterials; 2018 Jan; 153():1-13. PubMed ID: 29096397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study.
    Gómez-Lizárraga KK; Flores-Morales C; Del Prado-Audelo ML; Álvarez-Pérez MA; Piña-Barba MC; Escobedo C
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():326-335. PubMed ID: 28629025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel 3D scaffold with enhanced physical and cell response properties for bone tissue regeneration, fabricated by patterned electrospinning/electrospraying.
    Hejazi F; Mirzadeh H
    J Mater Sci Mater Med; 2016 Sep; 27(9):143. PubMed ID: 27550014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteoconductive 3D porous composite scaffold from regenerated cellulose and cuttlebone-derived hydroxyapatite.
    Palaveniene A; Tamburaci S; Kimna C; Glambaite K; Baniukaitiene O; Tihminlioğlu F; Liesiene J
    J Biomater Appl; 2019 Jan; 33(6):876-890. PubMed ID: 30451067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indirect selective laser sintering-printed microporous biphasic calcium phosphate scaffold promotes endogenous bone regeneration via activation of ERK1/2 signaling.
    Zeng H; Pathak JL; Shi Y; Ran J; Liang L; Yan Q; Wu T; Fan Q; Li M; Bai Y
    Biofabrication; 2020 Mar; 12(2):025032. PubMed ID: 32084655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Innovative Collagen-Based Cell-Printing Method for Obtaining Human Adipose Stem Cell-Laden Structures Consisting of Core-Sheath Structures for Tissue Engineering.
    Yeo M; Lee JS; Chun W; Kim GH
    Biomacromolecules; 2016 Apr; 17(4):1365-75. PubMed ID: 26998966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and Evaluation of Alginate/Bacterial Cellulose Nanocrystals-Chitosan-Gelatin Composite Scaffolds.
    Li Z; Chen X; Bao C; Liu C; Liu C; Li D; Yan H; Lin Q
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regenerated cellulose nanofiber reinforced chitosan hydrogel scaffolds for bone tissue engineering.
    Maharjan B; Park J; Kaliannagounder VK; Awasthi GP; Joshi MK; Park CH; Kim CS
    Carbohydr Polym; 2021 Jan; 251():117023. PubMed ID: 33142583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering.
    Guo H; Su J; Wei J; Kong H; Liu C
    Acta Biomater; 2009 Jan; 5(1):268-78. PubMed ID: 18722167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.