These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35542471)

  • 1. Synthesis of silver sulfide nanoparticles and their photodetector applications.
    Kang MH; Kim SH; Jang S; Lim JE; Chang H; Kong KJ; Myung S; Park JK
    RSC Adv; 2018 Aug; 8(50):28447-28452. PubMed ID: 35542471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-infrared-emitting nanoparticles activate collagen synthesis via TGFβ signaling.
    Kang MH; Yu HY; Kim GT; Lim JE; Jang S; Park TS; Park JK
    Sci Rep; 2020 Aug; 10(1):13309. PubMed ID: 32764617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible hybrid photodetector based on silver sulfide nanoparticles and multi-walled carbon nanotubes.
    Kim SH; Lim J; Lee S; Kang MH; Song W; Lim J; Lee S; Kim EK; Park JK; Myung S
    RSC Adv; 2021 Jun; 11(37):22625-22632. PubMed ID: 35480434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-responsivity hybrid α-Ag
    Ismail RA; Rawdhan HA; Ahmed DS
    Beilstein J Nanotechnol; 2020; 11():1596-1607. PubMed ID: 33134004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High responsivity of VIS-NIR photodetector based on Ag
    Zhang H; Wei D; Song X; Xu Z; Wang F; Li H; Sun W; Dai Z; Ren Y; Ye Y; Ren X; Yao J
    Nanotechnology; 2023 Feb; 34(18):. PubMed ID: 36724502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transformations of Ag
    Khan AU; Xu Z; Qian X; Hong A; Tang Q; Zeng T; Kah M; Li L
    J Hazard Mater; 2021 Jan; 401():123406. PubMed ID: 32653797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel near-infrared light-responsive photoelectrochemical platform for detecting microcystin-LR in fish based on Ag
    Zheng C; Yin M; Su B; Peng A; Guo Z; Chen X; Chen X
    Talanta; 2021 Jan; 221():121447. PubMed ID: 33076071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rethinking Stability of Silver Sulfide Nanoparticles (Ag2S-NPs) in the Aquatic Environment: Photoinduced Transformation of Ag2S-NPs in the Presence of Fe(III).
    Li L; Wang Y; Liu Q; Jiang G
    Environ Sci Technol; 2016 Jan; 50(1):188-96. PubMed ID: 26606372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced UV Photoresponsivity of ZnO Nanorods Decorated with Ag
    Jin Y; Jiao S; Wang D; Gao S; Wang J
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33670212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interpreting the effects of natural organic matter on antimicrobial activity of Ag
    Liu Y; Yang T; Wang L; Huang Z; Li J; Cheng H; Jiang J; Pang S; Qi J; Ma J
    Water Res; 2018 Nov; 145():12-20. PubMed ID: 30118974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural, optical, photoluminescence and antibacterial properties of copper-doped silver sulfide nanoparticles.
    Fakhri A; Pourmand M; Khakpour R; Behrouz S
    J Photochem Photobiol B; 2015 Aug; 149():78-83. PubMed ID: 26048527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Green synthesis, characterization, photocatalytic, fluorescence and antimicrobial activities of Cochlospermum gossypium capped Ag2S nanoparticles.
    Ayodhya D; Veerabhadram G
    J Photochem Photobiol B; 2016 Apr; 157():57-69. PubMed ID: 26894846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High retention of silver sulfide nanoparticles in natural soils.
    Li M; Greenfield BK; Nunes LM; Dang F; Liu HL; Zhou DM; Yin B
    J Hazard Mater; 2019 Oct; 378():120735. PubMed ID: 31203124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein corona-induced extraction coupled to Fenton oxidation for selective and non-destructive preconcentration of Ag
    Li Y; Gao Y; Jia J; Deng Y; Zhang K; Yan B; Zhou X
    Water Res; 2022 Oct; 224():119042. PubMed ID: 36103778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmon-enhanced reduced graphene oxide photodetector with monometallic of Au and Ag nanoparticles at VIS-NIR region.
    Rohizat NS; Ripain AHA; Lim CS; Tan CL; Zakaria R
    Sci Rep; 2021 Oct; 11(1):19688. PubMed ID: 34608217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloud point extraction (CPE) combined with single particle -inductively coupled plasma-mass spectrometry (SP-ICP-MS) to analyze and characterize nano-silver sulfide in water environment.
    Wei WJ; Yang Y; Li XY; Huang P; Wang Q; Yang PJ
    Talanta; 2022 Mar; 239():123117. PubMed ID: 34890942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silver sulfide nanoparticles (Ag2S-NPs) are taken up by plants and are phytotoxic.
    Wang P; Menzies NW; Lombi E; Sekine R; Blamey FP; Hernandez-Soriano MC; Cheng M; Kappen P; Peijnenburg WJ; Tang C; Kopittke PM
    Nanotoxicology; 2015; 9(8):1041-9. PubMed ID: 25686712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silver sulfide nanoparticles sensitized titanium dioxide nanotube arrays synthesized by in situ sulfurization for photocatalytic hydrogen production.
    Liu X; Liu Z; Lu J; Wu X; Chu W
    J Colloid Interface Sci; 2014 Jan; 413():17-23. PubMed ID: 24183425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and Spectral Analysis of Head-to-Tail Shaped Ag2S/ZnS Near-Infrared Quantum Dots with Manganese Dopant.
    Zhao F; Kim J
    J Nanosci Nanotechnol; 2015 Jul; 15(7):5083-6. PubMed ID: 26373083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the toxicities of silver and silver sulfide nanoparticles against Gram-positive and Gram-negative bacteria.
    Bala Subramaniyan S; Megarajan S; Vijayakumar S; Mariappan M; Anbazhagan V
    IET Nanobiotechnol; 2019 May; 13(3):326-331. PubMed ID: 31053697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.