BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35542482)

  • 1. Electrospinning preparation of a large surface area, hierarchically porous, and interconnected carbon nanofibrous network using polysulfone as a sacrificial polymer for high performance supercapacitors.
    Wang W; Wang H; Wang H; Jin X; Li J; Zhu Z
    RSC Adv; 2018 Aug; 8(50):28480-28486. PubMed ID: 35542482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of garlic skin-derived 3D hierarchical porous carbon for high-performance supercapacitors.
    Zhang Q; Han K; Li S; Li M; Li J; Ren K
    Nanoscale; 2018 Feb; 10(5):2427-2437. PubMed ID: 29335695
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Liu H; Song W; Xing A
    RSC Adv; 2019 Oct; 9(57):33539-33548. PubMed ID: 35529146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled preparation of interconnected 3D hierarchical porous carbons from bacterial cellulose-based composite monoliths for supercapacitors.
    Bai Q; Shen Y; Asoh TA; Li C; Dan Y; Uyama H
    Nanoscale; 2020 Jul; 12(28):15261-15274. PubMed ID: 32643739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors.
    Liang Q; Ye L; Huang ZH; Xu Q; Bai Y; Kang F; Yang QH
    Nanoscale; 2014 Nov; 6(22):13831-7. PubMed ID: 25300494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrogen-enriched hierarchically porous carbons prepared from polybenzoxazine for high-performance supercapacitors.
    Wan L; Wang J; Xie L; Sun Y; Li K
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15583-96. PubMed ID: 25137068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. B, N-dual doped sisal-based multiscale porous carbon for high-rate supercapacitors.
    Wu H; Yuan W; Zhao Y; Han D; Yuan X; Cheng L
    RSC Adv; 2019 Jan; 9(3):1476-1486. PubMed ID: 35518021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced Supercapacitors Based on Porous Hollow Carbon Nanofiber Electrodes with High Specific Capacitance and Large Energy Density.
    Liu Y; Liu Q; Wang L; Yang X; Yang W; Zheng J; Hou H
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4777-4786. PubMed ID: 31898452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of Porous Carbon Nanofibers from Polymer Blends Using Template Method for Electrode-Active Materials in Supercapacitor.
    Wang H; Yao L; Zuo H; Ruan F; Wang H
    Molecules; 2023 Feb; 28(5):. PubMed ID: 36903472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical porous carbon sheets derived on a MgO template for high-performance supercapacitor applications.
    Wen Y; Zhang L; Liu J; Wen X; Chen X; Ma J; Tang T; Mijowska E
    Nanotechnology; 2019 Jul; 30(29):295703. PubMed ID: 30861503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes.
    Qu WH; Xu YY; Lu AH; Zhang XQ; Li WC
    Bioresour Technol; 2015 Aug; 189():285-291. PubMed ID: 25898091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of Network-Structured Carbon Nanofiber Mats Based on PAN Blends Using Electrospinning and Hot-Pressing Methods for Supercapacitor Applications.
    Ma MJ; Seong JG; Radhakrishnan S; Ko TH; Kim BS
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Promising activated carbon derived from sugarcane tip as electrode material for high-performance supercapacitors.
    Wei B; Wei T; Xie C; Li K; Hang F
    RSC Adv; 2021 Aug; 11(45):28138-28147. PubMed ID: 35480768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical porous carbon derived from jujube fruits as sustainable and ultrahigh capacitance material for advanced supercapacitors.
    Yang V; Arumugam Senthil R; Pan J; Rajesh Kumar T; Sun Y; Liu X
    J Colloid Interface Sci; 2020 Nov; 579():347-356. PubMed ID: 32610207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional hierarchical porous carbon derived from lignin for supercapacitors: Insight into the hydrothermal carbonization and activation.
    Li H; Shi F; An Q; Zhai S; Wang K; Tong Y
    Int J Biol Macromol; 2021 Jan; 166():923-933. PubMed ID: 33152364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen-doped hierarchical porous carbon microsphere through KOH activation for supercapacitors.
    Jiang J; Chen H; Wang Z; Bao L; Qiang Y; Guan S; Chen J
    J Colloid Interface Sci; 2015 Aug; 452():54-61. PubMed ID: 25913778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binder free carbon nanofiber electrodes derived from polyacrylonitrile-lignin blends for high performance supercapacitors.
    Perera Jayawickramage RA; Balkus KJ; Ferraris JP
    Nanotechnology; 2019 Aug; 30(35):355402. PubMed ID: 31100735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-performance supercapacitors based on hierarchically porous carbons with a three-dimensional conductive network structure.
    Zou J; Tu W; Zeng SZ; Yao Y; Zhang Q; Wu H; Lan T; Liu S; Zeng X
    Dalton Trans; 2019 Apr; 48(16):5271-5284. PubMed ID: 30924838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polytetrafluoroethylene-assisted N/F co-doped hierarchically porous carbon as a high performance electrode for supercapacitors.
    Zhou J; Xu L; Li L; Li X
    J Colloid Interface Sci; 2019 Jun; 545():25-34. PubMed ID: 30861479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ZnO-assisted synthesis of lignin-based ultra-fine microporous carbon nanofibers for supercapacitors.
    Ma C; Wu L; Dirican M; Cheng H; Li J; Song Y; Shi J; Zhang X
    J Colloid Interface Sci; 2021 Mar; 586():412-422. PubMed ID: 33189324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.