BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 3554249)

  • 1. A segment of GCN4 mRNA containing the upstream AUG codons confers translational control upon a heterologous yeast transcript.
    Mueller PP; Harashima S; Hinnebusch AG
    Proc Natl Acad Sci U S A; 1987 May; 84(9):2863-7. PubMed ID: 3554249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The positive regulatory function of the 5'-proximal open reading frames in GCN4 mRNA can be mimicked by heterologous, short coding sequences.
    Williams NP; Mueller PP; Hinnebusch AG
    Mol Cell Biol; 1988 Sep; 8(9):3827-36. PubMed ID: 3065626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hierarchy of trans-acting factors modulates translation of an activator of amino acid biosynthetic genes in Saccharomyces cerevisiae.
    Hinnebusch AG
    Mol Cell Biol; 1985 Sep; 5(9):2349-60. PubMed ID: 3915540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple upstream AUG codons mediate translational control of GCN4.
    Mueller PP; Hinnebusch AG
    Cell; 1986 Apr; 45(2):201-7. PubMed ID: 3516411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequences that surround the stop codons of upstream open reading frames in GCN4 mRNA determine their distinct functions in translational control.
    Miller PF; Hinnebusch AG
    Genes Dev; 1989 Aug; 3(8):1217-25. PubMed ID: 2676723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutations in the structural genes for eukaryotic initiation factors 2 alpha and 2 beta of Saccharomyces cerevisiae disrupt translational control of GCN4 mRNA.
    Williams NP; Hinnebusch AG; Donahue TF
    Proc Natl Acad Sci U S A; 1989 Oct; 86(19):7515-9. PubMed ID: 2678106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular analysis of GCN3, a translational activator of GCN4: evidence for posttranslational control of GCN3 regulatory function.
    Hannig EM; Hinnebusch AG
    Mol Cell Biol; 1988 Nov; 8(11):4808-20. PubMed ID: 3062370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The first and fourth upstream open reading frames in GCN4 mRNA have similar initiation efficiencies but respond differently in translational control to change in length and sequence.
    Mueller PP; Jackson BM; Miller PF; Hinnebusch AG
    Mol Cell Biol; 1988 Dec; 8(12):5439-47. PubMed ID: 3072481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple cis-acting elements modulate the translational efficiency of GCN4 mRNA in yeast.
    Tzamarias D; Alexandraki D; Thireos G
    Proc Natl Acad Sci U S A; 1986 Jul; 83(13):4849-53. PubMed ID: 3088566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for regulation of reinitiation in translational control of GCN4 mRNA.
    Hinnebusch AG; Jackson BM; Mueller PP
    Proc Natl Acad Sci U S A; 1988 Oct; 85(19):7279-83. PubMed ID: 3050993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for translational regulation of the activator of general amino acid control in yeast.
    Hinnebusch AG
    Proc Natl Acad Sci U S A; 1984 Oct; 81(20):6442-6. PubMed ID: 6387704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of GCD14 and GCD15, novel genes required for translational repression of GCN4 mRNA in Saccharomyces cerevisiae.
    Cuesta R; Hinnebusch AG; Tamame M
    Genetics; 1998 Mar; 148(3):1007-20. PubMed ID: 9539420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. mRNA sequences influencing translation and the selection of AUG initiator codons in the yeast Saccharomyces cerevisiae.
    Yun DF; Laz TM; Clements JM; Sherman F
    Mol Microbiol; 1996 Mar; 19(6):1225-39. PubMed ID: 8730865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translation Initiation from Conserved Non-AUG Codons Provides Additional Layers of Regulation and Coding Capacity.
    Ivanov IP; Wei J; Caster SZ; Smith KM; Michel AM; Zhang Y; Firth AE; Freitag M; Dunlap JC; Bell-Pedersen D; Atkins JF; Sachs MS
    mBio; 2017 Jun; 8(3):. PubMed ID: 28655822
    [No Abstract]   [Full Text] [Related]  

  • 15. Multiple GCD genes required for repression of GCN4, a transcriptional activator of amino acid biosynthetic genes in Saccharomyces cerevisiae.
    Harashima S; Hinnebusch AG
    Mol Cell Biol; 1986 Nov; 6(11):3990-8. PubMed ID: 3540603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quantitative model for translational control of the GCN4 gene of Saccharomyces cerevisiae.
    Abastado JP; Miller PF; Hinnebusch AG
    New Biol; 1991 May; 3(5):511-24. PubMed ID: 1883814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of ribosomal reinitiation at upstream open reading frames in amino acid-starved cells forms the basis for GCN4 translational control.
    Abastado JP; Miller PF; Jackson BM; Hinnebusch AG
    Mol Cell Biol; 1991 Jan; 11(1):486-96. PubMed ID: 1986242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilizing the GCN4 leader region to investigate the role of the sequence determinants in nonsense-mediated mRNA decay.
    Ruiz-Echevarria MJ; Peltz SW
    EMBO J; 1996 Jun; 15(11):2810-9. PubMed ID: 8654378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A segment of mRNA encoding the leader peptide of the CPA1 gene confers repression by arginine on a heterologous yeast gene transcript.
    Delbecq P; Werner M; Feller A; Filipkowski RK; Messenguy F; PiƩrard A
    Mol Cell Biol; 1994 Apr; 14(4):2378-90. PubMed ID: 8139542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eukaryotic translation initiation factor 5 is critical for integrity of the scanning preinitiation complex and accurate control of GCN4 translation.
    Singh CR; Curtis C; Yamamoto Y; Hall NS; Kruse DS; He H; Hannig EM; Asano K
    Mol Cell Biol; 2005 Jul; 25(13):5480-91. PubMed ID: 15964804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.