These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35542516)

  • 1. Weavable asymmetric carbon nanotube yarn supercapacitor for electronic textiles.
    Choi C; Park JW; Kim KJ; Lee DW; de Andrade MJ; Kim SH; Gambhir S; Spinks GM; Baughman RH; Kim SJ
    RSC Adv; 2018 Apr; 8(24):13112-13120. PubMed ID: 35542516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of system capacitance via weavable superelastic biscrolled yarn supercapacitors.
    Choi C; Kim KM; Kim KJ; Lepró X; Spinks GM; Baughman RH; Kim SJ
    Nat Commun; 2016 Dec; 7():13811. PubMed ID: 27976668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric carbon nanotube-MnO₂ two-ply yarn supercapacitors for wearable electronics.
    Su F; Miao M
    Nanotechnology; 2014 Apr; 25(13):135401. PubMed ID: 24583526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices.
    Lee JA; Shin MK; Kim SH; Cho HU; Spinks GM; Wallace GG; Lima MD; Lepró X; Kozlov ME; Baughman RH; Kim SJ
    Nat Commun; 2013; 4():1970. PubMed ID: 23733169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymorphous Supercapacitors Constructed from Flexible Three-Dimensional Carbon Network/Polyaniline/MnO
    Wang J; Dong L; Xu C; Ren D; Ma X; Kang F
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10851-10859. PubMed ID: 29528208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles.
    Huang Y; Hu H; Huang Y; Zhu M; Meng W; Liu C; Pei Z; Hao C; Wang Z; Zhi C
    ACS Nano; 2015 May; 9(5):4766-75. PubMed ID: 25842997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrodeposition of α-MnO
    Jeong JH; Park JW; Lee DW; Baughman RH; Kim SJ
    Sci Rep; 2019 Aug; 9(1):11271. PubMed ID: 31375776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Solid-State Wire-Shaped Supercapacitor Based on Nylon/Ag/Polypyrrole and Nylon/Ag/MnO
    Zhang R; Wang X; Cai S; Tao K; Xu Y
    Polymers (Basel); 2023 Mar; 15(7):. PubMed ID: 37050240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Core-spun carbon nanotube yarn supercapacitors for wearable electronic textiles.
    Zhang D; Miao M; Niu H; Wei Z
    ACS Nano; 2014 May; 8(5):4571-9. PubMed ID: 24754666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stretchable, weavable coiled carbon nanotube/MnO2/polymer fiber solid-state supercapacitors.
    Choi C; Kim SH; Sim HJ; Lee JA; Choi AY; Kim YT; Lepró X; Spinks GM; Baughman RH; Kim SJ
    Sci Rep; 2015 Mar; 5():9387. PubMed ID: 25797351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Performance Carbon Nanotube Yarn Supercapacitors with a Surface-Oxidized Copper Current Collector.
    Zhang D; Wu Y; Li T; Huang Y; Zhang A; Miao M
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25835-42. PubMed ID: 26523943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Weavable and Scalable Cotton-Yarn-Based Battery Activated by Human Sweat for Textile Electronics.
    Xiao G; Ju J; Lu H; Shi X; Wang X; Wang W; Xia Q; Zhou G; Sun W; Li CM; Qiao Y; Lu Z
    Adv Sci (Weinh); 2022 Mar; 9(7):e2103822. PubMed ID: 34989163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Weavable, Conductive Yarn-Based NiCo//Zn Textile Battery with High Energy Density and Rate Capability.
    Huang Y; Ip WS; Lau YY; Sun J; Zeng J; Yeung NSS; Ng WS; Li H; Pei Z; Xue Q; Wang Y; Yu J; Hu H; Zhi C
    ACS Nano; 2017 Sep; 11(9):8953-8961. PubMed ID: 28813141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical NiCo
    Wang YF; Wang HT; Yang SY; Yue Y; Bian SW
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):30384-30390. PubMed ID: 31347825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible supercapacitor made of carbon nanotube yarn with internal pores.
    Choi C; Lee JA; Choi AY; Kim YT; Lepró X; Lima MD; Baughman RH; Kim SJ
    Adv Mater; 2014 Apr; 26(13):2059-65. PubMed ID: 24353070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biscrolled Carbon Nanotube Yarn Structured Silver-Zinc Battery.
    Lee JM; Choi C; Kim JH; de Andrade MJ; Baughman RH; Kim SJ
    Sci Rep; 2018 Jul; 8(1):11150. PubMed ID: 30042435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inkjet-Printed Electrodes on A4 Paper Substrates for Low-Cost, Disposable, and Flexible Asymmetric Supercapacitors.
    Sundriyal P; Bhattacharya S
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38507-38521. PubMed ID: 28991438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics.
    Kou L; Huang T; Zheng B; Han Y; Zhao X; Gopalsamy K; Sun H; Gao C
    Nat Commun; 2014 May; 5():3754. PubMed ID: 24786366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution-Blown Aligned Nanofiber Yarn and Its Application in Yarn-Shaped Supercapacitor.
    Yang J; Mao Z; Zheng R; Liu H; Shi L
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32859093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes.
    Jiang H; Li C; Sun T; Ma J
    Nanoscale; 2012 Feb; 4(3):807-12. PubMed ID: 22159343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.