These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 35542544)
21. Properties and adsorption mechanism of magnetic biochar modified with molybdenum disulfide for cadmium in aqueous solution. Khan ZH; Gao M; Qiu W; Song Z Chemosphere; 2020 Sep; 255():126995. PubMed ID: 32416394 [TBL] [Abstract][Full Text] [Related]
22. HNO Jin J; Li S; Peng X; Liu W; Zhang C; Yang Y; Han L; Du Z; Sun K; Wang X Bioresour Technol; 2018 May; 256():247-253. PubMed ID: 29453051 [TBL] [Abstract][Full Text] [Related]
23. Probing the efficiency of magnetically modified biomass-derived biochar for effective phosphate removal. Ajmal Z; Muhmood A; Dong R; Wu S J Environ Manage; 2020 Jan; 253():109730. PubMed ID: 31665689 [TBL] [Abstract][Full Text] [Related]
24. Synthesis of magnetic biochar composites for enhanced uranium(VI) adsorption. Li M; Liu H; Chen T; Dong C; Sun Y Sci Total Environ; 2019 Feb; 651(Pt 1):1020-1028. PubMed ID: 30266047 [TBL] [Abstract][Full Text] [Related]
25. Uranium removal from aqueous solution using macauba endocarp-derived biochar: Effect of physical activation. Guilhen SN; Rovani S; Araujo LG; Tenório JAS; Mašek O Environ Pollut; 2021 Mar; 272():116022. PubMed ID: 33221084 [TBL] [Abstract][Full Text] [Related]
26. KOH-activated high surface area Douglas Fir biochar for adsorbing aqueous Cr(VI), Pb(II) and Cd(II). Herath A; Layne CA; Perez F; Hassan EB; Pittman CU; Mlsna TE Chemosphere; 2021 Apr; 269():128409. PubMed ID: 33069440 [TBL] [Abstract][Full Text] [Related]
27. Efficient removal of Cd(II) and Pb(II) from aqueous solution using biochars derived from food waste. Tian S; Gong X; Yu Q; Yao F; Li W; Guo Z; Zhang X; Yuan Y; Fan Y; Bian R; Wang Y; Zhang X; Li L; Pan G Environ Sci Pollut Res Int; 2023 Dec; 30(58):122364-122380. PubMed ID: 37966646 [TBL] [Abstract][Full Text] [Related]
28. The sorption of lead(II) ions on rice husk ash. Naiya TK; Bhattacharya AK; Mandal S; Das SK J Hazard Mater; 2009 Apr; 163(2-3):1254-64. PubMed ID: 18783880 [TBL] [Abstract][Full Text] [Related]
29. Effective removal of Hg(II) and MeHg from aqueous environment by ball milling aided thiol-modification of biochars: Effect of different pyrolysis temperatures. Zhao L; Zhang Y; Wang L; Lyu H; Xia S; Tang J Chemosphere; 2022 May; 294():133820. PubMed ID: 35104542 [TBL] [Abstract][Full Text] [Related]
30. Modification of sludge-based biochar using air roasting-oxidation and its performance in adsorption of uranium(VI) from aqueous solutions. Sun Y; Zeng B; Dai Y; Liang X; Zhang L; Ahmad R; Su X J Colloid Interface Sci; 2022 May; 614():547-555. PubMed ID: 35121513 [TBL] [Abstract][Full Text] [Related]
31. Pb(II) removal from water using Fe-coated bamboo charcoal with the assistance of microwaves. Zhang Z; Wang X; Wang Y; Xia S; Chen L; Zhang Y; Zhao J J Environ Sci (China); 2013 May; 25(5):1044-53. PubMed ID: 24218836 [TBL] [Abstract][Full Text] [Related]
32. Effect of magnetic field on the removal of copper from aqueous solution using activated carbon derived from rice husk. Kamilya T; Mondal S; Saha R Environ Sci Pollut Res Int; 2022 Mar; 29(14):20017-20034. PubMed ID: 33394433 [TBL] [Abstract][Full Text] [Related]
33. Efficient performance of magnesium oxide loaded biochar for the significant removal of Pb Shi Q; Zhang H; Shahab A; Zeng H; Zeng H; Bacha AU; Nabi I; Siddique J; Ullah H Ecotoxicol Environ Saf; 2021 Sep; 221():112426. PubMed ID: 34166940 [TBL] [Abstract][Full Text] [Related]
34. Removal of levofloxacin from aqueous solution using rice-husk and wood-chip biochars. Yi S; Gao B; Sun Y; Wu J; Shi X; Wu B; Hu X Chemosphere; 2016 May; 150():694-701. PubMed ID: 26796588 [TBL] [Abstract][Full Text] [Related]
35. Adsorption of Pb Zhang L; Liu X; Huang X; Wang W; Sun P; Li Y Environ Technol; 2019 Jun; 40(14):1853-1861. PubMed ID: 29364052 [TBL] [Abstract][Full Text] [Related]
36. Enhanced adsorption of aqueous Pb(II) by modified biochar produced through pyrolysis of watermelon seeds. Ahmed W; Mehmood S; Núñez-Delgado A; Ali S; Qaswar M; Shakoor A; Mahmood M; Chen DY Sci Total Environ; 2021 Aug; 784():147136. PubMed ID: 33892324 [TBL] [Abstract][Full Text] [Related]
37. Sustainable Low-Concentration Arsenite [As(III)] Removal in Single and Multicomponent Systems Using Hybrid Iron Oxide-Biochar Nanocomposite Adsorbents-A Mechanistic Study. Singh P; Sarswat A; Pittman CU; Mlsna T; Mohan D ACS Omega; 2020 Feb; 5(6):2575-2593. PubMed ID: 32095682 [TBL] [Abstract][Full Text] [Related]
38. Influence of Synthesis Methods on the High-Efficiency Removal of Cr(VI) from Aqueous Solution by Fe-Modified Magnetic Biochars. Jian X; Li S; Feng Y; Chen X; Kuang R; Li B; Sun Y ACS Omega; 2020 Dec; 5(48):31234-31243. PubMed ID: 33324833 [TBL] [Abstract][Full Text] [Related]
39. Alginate-modified biochar derived from rice husk waste for improvement uptake performance of lead in wastewater. Pham TH; Chu TTH; Nguyen DK; Le TKO; Obaid SA; Alharbi SA; Kim J; Nguyen MV Chemosphere; 2022 Nov; 307(Pt 3):135956. PubMed ID: 35964720 [TBL] [Abstract][Full Text] [Related]
40. High efficiency removal of Pb(ii) in aqueous solution by a biochar-supported nanoscale ferrous sulfide composite. Chen C; Qiu M RSC Adv; 2020 Dec; 11(2):953-959. PubMed ID: 35423700 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]