These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35542555)

  • 21. Tunable electronic structure and magnetic moment in C
    Wang Y; Song N; Jia M; Yang D; Panashe C; Yang Y; Wang J
    Phys Chem Chem Phys; 2017 Jun; 19(23):15021-15029. PubMed ID: 28555221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spintronic Transport in Armchair Graphene Nanoribbon with Ferromagnetic Electrodes: Half-Metallic Properties.
    Liu H; Kondo H; Ohno T
    Nanoscale Res Lett; 2016 Dec; 11(1):456. PubMed ID: 27739053
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Realizing semiconductor-half-metal transition in zigzag graphene nanoribbons supported on hybrid fluorographene-graphane nanoribbons.
    Tang S; Cao X
    Phys Chem Chem Phys; 2014 Nov; 16(42):23214-23. PubMed ID: 25254929
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Magnetic and electronic properties of α-graphyne nanoribbons.
    Yue Q; Chang S; Kang J; Tan J; Qin S; Li J
    J Chem Phys; 2012 Jun; 136(24):244702. PubMed ID: 22755594
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tweaking the magnetism of MoS2 nanoribbon with hydrogen and carbon passivation.
    Sagynbaeva M; Panigrahi P; Yunguo L; Ramzan M; Ahuja R
    Nanotechnology; 2014 Apr; 25(16):165703. PubMed ID: 24675167
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Half-metallic antiferromagnets induced by non-magnetic adatoms on bilayer silicene.
    Ouyang XF; Zhang YZ; Wang L; Liu DS
    RSC Adv; 2023 Jan; 13(4):2404-2410. PubMed ID: 36741172
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Armchair-edged nanoribbon as a bottleneck to electronic total transmission through a topologically nontrivial graphene nanojunction.
    Jiang L; Liu Z; Zhao X; Zheng Y
    J Phys Condens Matter; 2016 Mar; 28(8):085501. PubMed ID: 26828909
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tunable electronic structures and half-metallicity in two-dimensional InSe functionalized with magnetic superatom.
    Kang W; Liu X; Zeng W; Zhang Y; Qi L; Liu J; Fang L; Zhou M
    J Phys Condens Matter; 2020 Jun; 32(36):. PubMed ID: 32353836
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Defective ZrSe
    Kheirabadi SJ; Behzadi F; Gity F; Hurley PK; Khorrami SK; Behroozi M; Sanaee M; Ansari L
    J Phys Condens Matter; 2023 Dec; 36(13):. PubMed ID: 38064742
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phagraphene nanoribbons: half-metallicity and magnetic phase transition by functional groups and electric field.
    Yuan PF; Hu R; Fan ZQ; Zhang ZH
    J Phys Condens Matter; 2018 Nov; 30(44):445802. PubMed ID: 30132442
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Half-metallic graphene nanoribbons.
    Son YW; Cohen ML; Louie SG
    Nature; 2006 Nov; 444(7117):347-9. PubMed ID: 17108960
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spin-semiconducting properties in silicene nanoribbons.
    Zhao YC; Ni J
    Phys Chem Chem Phys; 2014 Aug; 16(29):15477-82. PubMed ID: 24950009
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanoscale magnetism and novel electronic properties of a bilayer bismuth(111) film with vacancies and chemical doping.
    Sahoo MP; Zhang Y; Wang J
    Phys Chem Chem Phys; 2016 Jul; 18(30):20550-61. PubMed ID: 27406933
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Manipulation of Magnetic State in Armchair Black Phosphorene Nanoribbon by Charge Doping.
    Farooq MU; Hashmi A; Hong J
    ACS Appl Mater Interfaces; 2015 Jul; 7(26):14423-30. PubMed ID: 26076899
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quenching of local magnetic moment in oxygen adsorbed graphene nanoribbons.
    Veiga RG; Miwa RH; Srivastava GP
    J Chem Phys; 2008 May; 128(20):201101. PubMed ID: 18513000
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intrinsic half-metallicity in modified graphene nanoribbons.
    Dutta S; Manna AK; Pati SK
    Phys Rev Lett; 2009 Mar; 102(9):096601. PubMed ID: 19392544
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modulating Electronic Structures of Armchair GaN Nanoribbons by Chemical Functionalization under an Electric Field Effect.
    Alaal N; Roqan IS
    ACS Omega; 2020 Jan; 5(2):1261-1269. PubMed ID: 31984284
    [TBL] [Abstract][Full Text] [Related]  

  • 39. First-principles study of line-defect-embedded zigzag graphene nanoribbons: electronic and magnetic properties.
    Guan Z; Si C; Hu S; Duan W
    Phys Chem Chem Phys; 2016 Apr; 18(17):12350-6. PubMed ID: 27087060
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Origin of spin polarization in an edge boron doped zigzag graphene nanoribbon: a potential spin filter.
    Chakrabarty S; Wasey AHMA; Thapa R; Das GP
    Nanotechnology; 2018 Aug; 29(34):345203. PubMed ID: 29862988
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.