These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 35542555)
41. Tunable electronic and magnetic properties of graphene-like XYBe Ding Y; Wang Y Phys Chem Chem Phys; 2018 Mar; 20(10):6830-6837. PubMed ID: 29303518 [TBL] [Abstract][Full Text] [Related]
42. A high performance N-doped graphene nanoribbon based spintronic device applicable with a wide range of adatoms. Rezapour MR; Lee G; Kim KS Nanoscale Adv; 2020 Dec; 2(12):5905-5911. PubMed ID: 36133856 [TBL] [Abstract][Full Text] [Related]
43. Phosphorene nanoribbon as a promising candidate for thermoelectric applications. Zhang J; Liu HJ; Cheng L; Wei J; Liang JH; Fan DD; Shi J; Tang XF; Zhang QJ Sci Rep; 2014 Sep; 4():6452. PubMed ID: 25245326 [TBL] [Abstract][Full Text] [Related]
44. MoS2 nanoribbons: high stability and unusual electronic and magnetic properties. Li Y; Zhou Z; Zhang S; Chen Z J Am Chem Soc; 2008 Dec; 130(49):16739-44. PubMed ID: 19554733 [TBL] [Abstract][Full Text] [Related]
45. Tuning the Electronic and Magnetic Properties of Graphene Flake Embedded in Boron Nitride Nanoribbons with Transverse Electric Fields: First-Principles Calculations. Guan Z; Ni S; Hu S ACS Omega; 2019 Jun; 4(6):10293-10300. PubMed ID: 31460121 [TBL] [Abstract][Full Text] [Related]
46. Electrostatic doping tunable magnetic transition and half-metallicity in the monolayer CrCTe Liu L; Jiang P; Huang HM; Li YL J Phys Condens Matter; 2024 Jun; 36(35):. PubMed ID: 38788733 [TBL] [Abstract][Full Text] [Related]
47. Occurrence of spintronics behaviour (half-metallicity, spin gapless semiconductor and bipolar magnetic semiconductor) depending on the location of oxygen vacancies in BiFe Rajan PI; Mahalakshmi S; Chandra S R Soc Open Sci; 2017 Jun; 4(6):170273. PubMed ID: 28680680 [TBL] [Abstract][Full Text] [Related]
48. Electronic Band Gap Tuning and Calculations of Mechanical Strength and Deformation Potential by Applying Uniaxial Strain on MX Devi A; Kumar N; Thakur A; Kumar A; Singh A; Ahluwalia PK ACS Omega; 2022 Nov; 7(44):40054-40066. PubMed ID: 36385828 [TBL] [Abstract][Full Text] [Related]
49. Tuning Magnetism and Electronic Phase Transitions by Strain and Electric Field in Zigzag MoS2 Nanoribbons. Kou L; Tang C; Zhang Y; Heine T; Chen C; Frauenheim T J Phys Chem Lett; 2012 Oct; 3(20):2934-41. PubMed ID: 26292229 [TBL] [Abstract][Full Text] [Related]
50. Spatially separated spin carriers in spin-semiconducting graphene nanoribbons. Wang ZF; Jin S; Liu F Phys Rev Lett; 2013 Aug; 111(9):096803. PubMed ID: 24033061 [TBL] [Abstract][Full Text] [Related]
51. Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors. Gong SJ; Gong C; Sun YY; Tong WY; Duan CG; Chu JH; Zhang X Proc Natl Acad Sci U S A; 2018 Aug; 115(34):8511-8516. PubMed ID: 30076226 [TBL] [Abstract][Full Text] [Related]
52. Unconventional magnetic anisotropy in one-dimensional Rashba system realized by adsorbing Gd atom on zigzag graphene nanoribbons. Qin Z; Qin G; Shao B; Zuo X Nanoscale; 2017 Aug; 9(32):11657-11666. PubMed ID: 28770919 [TBL] [Abstract][Full Text] [Related]
53. Boron and nitrogen impurities in SiC nanoribbons: an ab initio investigation. Costa CD; Morbec JM J Phys Condens Matter; 2011 May; 23(20):205504. PubMed ID: 21540516 [TBL] [Abstract][Full Text] [Related]
54. First-principles study of the triwing graphene nanoribbons: junction-dependent electronic structures and electric field modulations. Ding Y; Wang Y Phys Chem Chem Phys; 2012 Feb; 14(6):2040-9. PubMed ID: 22234604 [TBL] [Abstract][Full Text] [Related]
55. High spin polarization in formamidinium transition metal iodides: first principles prediction of novel half-metals and spin gapless semiconductors. Huang HM; Cao ML; Jiang ZY; Xiong YC; Zhang X; Luo SJ; Laref A Phys Chem Chem Phys; 2019 Jul; 21(29):16213-16222. PubMed ID: 31298246 [TBL] [Abstract][Full Text] [Related]
56. Electronic structure of atomic Ti chains on semiconducting graphene nanoribbons: a first-principles study. Kan EJ; Xiang HJ; Yang J; Hou JG J Chem Phys; 2007 Oct; 127(16):164706. PubMed ID: 17979370 [TBL] [Abstract][Full Text] [Related]
57. Coupled Spin States in Armchair Graphene Nanoribbons with Asymmetric Zigzag Edge Extensions. Sun Q; Yao X; Gröning O; Eimre K; Pignedoli CA; Müllen K; Narita A; Fasel R; Ruffieux P Nano Lett; 2020 Sep; 20(9):6429-6436. PubMed ID: 32787158 [TBL] [Abstract][Full Text] [Related]
58. Inducing abundant magnetic phases and enhancing magnetic stability by edge modifications and physical regulations for NiI Yi Y; Han J; Li Z; Cao S; Zhang Z Phys Chem Chem Phys; 2024 Feb; 26(6):5045-5058. PubMed ID: 38258528 [TBL] [Abstract][Full Text] [Related]
59. Designing Organic Spin-Gapless Semiconductors via Molecular Adsorption on C Zhao D; Tang X; Xing W; Zhang Y; Gao X; Zhang M; Xie Z; Yan X; Ju L Molecules; 2024 Jul; 29(13):. PubMed ID: 38999089 [TBL] [Abstract][Full Text] [Related]
60. Width-Tuned Magnetic Order Oscillation on Zigzag Edges of Honeycomb Nanoribbons. Chen WC; Zhou Y; Yu SL; Yin WG; Gong CD Nano Lett; 2017 Jul; 17(7):4400-4404. PubMed ID: 28648082 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]