These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35542620)

  • 21. "Return to the Soil" Nanopaper Sensor Device for Hyperdense Sensor Networks.
    Kasuga T; Yagyu H; Uetani K; Koga H; Nogi M
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43488-43493. PubMed ID: 31659891
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Swelling-based gelation of wet cellulose nanopaper evaluated by single particle tracking.
    Moriwaki S; Hanasaki I
    Sci Technol Adv Mater; 2023; 24(1):2153622. PubMed ID: 36620091
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrically conductive lines on cellulose nanopaper for flexible electrical devices.
    Hsieh MC; Kim C; Nogi M; Suganuma K
    Nanoscale; 2013 Oct; 5(19):9289-95. PubMed ID: 23793980
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Binding Conductive Ink Initiatively and Strongly: Transparent and Thermally Stable Cellulose Nanopaper as a Promising Substrate for Flexible Electronics.
    Yu H; Fang D; Dirican M; Wang R; Tian Y; Chen L; Liu H; Wang J; Tang F; Asiri AM; Zhang X; Tao J
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20281-20290. PubMed ID: 31083900
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures.
    Sehaqui H; Liu A; Zhou Q; Berglund LA
    Biomacromolecules; 2010 Sep; 11(9):2195-8. PubMed ID: 20698565
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transparent Multi-Layer Acrylic Composites Reinforced with poly(Acrylated Urethane) Filled Low Grammage Bacterial Cellulose Nanopaper.
    Wloch D; Herrera N; Lee KY
    Macromol Rapid Commun; 2024 Jun; ():e2400098. PubMed ID: 38862122
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transparent nanopaper with tailored optical properties.
    Zhu H; Parvinian S; Preston C; Vaaland O; Ruan Z; Hu L
    Nanoscale; 2013 May; 5(9):3787-92. PubMed ID: 23508263
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NanoPADs and nanoFACEs: an optically transparent nanopaper-based device for biomedical applications.
    Ying B; Park S; Chen L; Dong X; Young EWK; Liu X
    Lab Chip; 2020 Sep; 20(18):3322-3333. PubMed ID: 32766659
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chitin-Derived Nitrogen-Doped Carbon Nanopaper with Subwavelength Nanoporous Structures for Solar Thermal Heating.
    Yeamsuksawat T; Zhu L; Kasuga T; Nogi M; Koga H
    Nanomaterials (Basel); 2023 Apr; 13(9):. PubMed ID: 37177025
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flexible conductive Ag nanowire/cellulose nanofibril hybrid nanopaper for strain and temperature sensing applications.
    Yin R; Yang S; Li Q; Zhang S; Liu H; Han J; Liu C; Shen C
    Sci Bull (Beijing); 2020 Jun; 65(11):899-908. PubMed ID: 36747422
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strong and tough cellulose nanopaper with high specific surface area and porosity.
    Sehaqui H; Zhou Q; Ikkala O; Berglund LA
    Biomacromolecules; 2011 Oct; 12(10):3638-44. PubMed ID: 21888417
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flexible, Transparent, and Hazy Cellulose Nanopaper with Efficient Near-Infrared Luminescence Fabricated by 2D Lanthanide (Ln = Nd, Yb, or Er) Metal-Organic-Framework-Grafted Oxidized Cellulose Nanofibrils.
    Chang H; Yao S; Kang X; Zhang X; Ma N; Zhang M; Li X; Zhang Z
    Inorg Chem; 2020 Nov; 59(22):16611-16621. PubMed ID: 33103421
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oriented Cellulose Nanopaper (OCNP) based on bagasse cellulose nanofibrils.
    Djafari Petroudy SR; Rasooly Garmaroody E; Rudi H
    Carbohydr Polym; 2017 Feb; 157():1883-1891. PubMed ID: 27987908
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Holocellulose Nanofibers of High Molar Mass and Small Diameter for High-Strength Nanopaper.
    Galland S; Berthold F; Prakobna K; Berglund LA
    Biomacromolecules; 2015 Aug; 16(8):2427-35. PubMed ID: 26151837
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrodeposition of cellulose nanofibers as an efficient dehydration method.
    Kasuga T; Li C; Mizui A; Ishioka S; Koga H; Nogi M
    Carbohydr Polym; 2024 Sep; 340():122310. PubMed ID: 38858010
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring Large Ductility in Cellulose Nanopaper Combining High Toughness and Strength.
    Chen F; Xiang W; Sawada D; Bai L; Hummel M; Sixta H; Budtova T
    ACS Nano; 2020 Sep; 14(9):11150-11159. PubMed ID: 32804482
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A miniaturized flexible antenna printed on a high dielectric constant nanopaper composite.
    Inui T; Koga H; Nogi M; Komoda N; Suganuma K
    Adv Mater; 2015 Feb; 27(6):1112-6. PubMed ID: 25530578
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions.
    Liu A; Walther A; Ikkala O; Belova L; Berglund LA
    Biomacromolecules; 2011 Mar; 12(3):633-41. PubMed ID: 21291221
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A nanopaper-based artificial tongue: a ratiometric fluorescent sensor array on bacterial nanocellulose for chemical discrimination applications.
    Abbasi-Moayed S; Golmohammadi H; Hormozi-Nezhad MR
    Nanoscale; 2018 Feb; 10(5):2492-2502. PubMed ID: 29340401
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development and applications of transparent conductive nanocellulose paper.
    Li S; Lee PS
    Sci Technol Adv Mater; 2017; 18(1):620-633. PubMed ID: 28970870
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.