These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35542620)

  • 41. Green in-situ synthesized silver nanoparticles embedded in bacterial cellulose nanopaper as a bionanocomposite plasmonic sensor.
    Pourreza N; Golmohammadi H; Naghdi T; Yousefi H
    Biosens Bioelectron; 2015 Dec; 74():353-9. PubMed ID: 26159156
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transparent Conductive Nanofiber Paper for Foldable Solar Cells.
    Nogi M; Karakawa M; Komoda N; Yagyu H; Nge TT
    Sci Rep; 2015 Nov; 5():17254. PubMed ID: 26607742
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cellulose Nanopaper: Fabrication, Functionalization, and Applications.
    Liu W; Liu K; Du H; Zheng T; Zhang N; Xu T; Pang B; Zhang X; Si C; Zhang K
    Nanomicro Lett; 2022 Apr; 14(1):104. PubMed ID: 35416525
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tailoring water stability of cellulose nanopaper by surface functionalization.
    Operamolla A; Casalini S; Console D; Capodieci L; Di Benedetto F; Bianco GV; Babudri F
    Soft Matter; 2018 Sep; 14(36):7390-7400. PubMed ID: 30198543
    [TBL] [Abstract][Full Text] [Related]  

  • 45. TEMPO-oxidised nanocellulose hydrogels and self-standing films derived from bacterial cellulose nanopaper.
    Yang KY; Wloch D; Lee KY
    RSC Adv; 2021 Aug; 11(45):28352-28360. PubMed ID: 35480772
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Anisotropic Thermal Expansion of Transparent Cellulose Nanopapers.
    Hirano T; Mitsuzawa K; Ishioka S; Daicho K; Soeta H; Zhao M; Takeda M; Takai Y; Fujisawa S; Saito T
    Front Chem; 2020; 8():68. PubMed ID: 32117891
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Stereoselectively water resistant hybrid nanopapers prepared by cellulose nanofibers and water-based polyurethane.
    Sethi J; Farooq M; Österberg M; Illikainen M; Sirviö JA
    Carbohydr Polym; 2018 Nov; 199():286-293. PubMed ID: 30143131
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Room-temperature humidity-sensing performance of SiC nanopaper.
    Li GY; Ma J; Peng G; Chen W; Chu ZY; Li YH; Hu TJ; Li XD
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22673-9. PubMed ID: 25470597
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Near-infrared emissive lanthanide hybridized nanofibrillated cellulose nanopaper as ultraviolet filter.
    Xue B; Zhang Z; Sun Y; Wang J; Jiang H; Du M; Chi C; Li X
    Carbohydr Polym; 2018 Apr; 186():176-183. PubMed ID: 29455976
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Printed Flexible Humidity Sensor with High Sensitivity and Fast Response Using a Cellulose Nanofiber/Carbon Black Composite.
    Tachibana S; Wang YF; Sekine T; Takeda Y; Hong J; Yoshida A; Abe M; Miura R; Watanabe Y; Kumaki D; Tokito S
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5721-5728. PubMed ID: 35067045
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An Opto- and Thermal-Rewrite PCM/CNF-IR 780 Energy Storage Nanopaper with Mechanical Regulated Performance.
    Liu J; Jiao D; Hoenders D; Lossada F; Yu W; Zhu B; Walther A; Zhang Q
    Small; 2022 Jun; 18(25):e2200688. PubMed ID: 35599429
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Highly Transparent Conducting Nanopaper for Solid State Foldable Electrochromic Devices.
    Kang W; Lin MF; Chen J; Lee PS
    Small; 2016 Dec; 12(46):6370-6377. PubMed ID: 27689677
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Flexible Transparent Molybdenum Trioxide Nanopaper for Energy Storage.
    Yao B; Huang L; Zhang J; Gao X; Wu J; Cheng Y; Xiao X; Wang B; Li Y; Zhou J
    Adv Mater; 2016 Aug; 28(30):6353-8. PubMed ID: 27174574
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Flexible and Transparent Cellulose-Based Ionic Film as a Humidity Sensor.
    Wang Y; Zhang L; Zhou J; Lu A
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7631-7638. PubMed ID: 31961643
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhancement of Luminance in Powder Electroluminescent Devices by Substrates of Smooth and Transparent Cellulose Nanofiber Films.
    Tsuneyasu S; Watanabe R; Takeda N; Uetani K; Izakura S; Kasuya K; Takahashi K; Satoh T
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33802162
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sustainable valorization of paper mill sludge into cellulose nanofibrils and cellulose nanopaper.
    Du H; Parit M; Wu M; Che X; Wang Y; Zhang M; Wang R; Zhang X; Jiang Z; Li B
    J Hazard Mater; 2020 Dec; 400():123106. PubMed ID: 32580093
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Micro- and nano-fibrils of manau rattan and solvent-exchange-induced high-haze transparent holocellulose nanofibril film.
    Han X; Wang J; Wang J; Ding L; Zhang K; Han J; Jiang S
    Carbohydr Polym; 2022 Dec; 298():120075. PubMed ID: 36241270
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Strengthening Cellulose Nanopaper via Deep Eutectic Solvent and Ultrasound-Induced Surface Disordering of Nanofibers.
    Batishcheva EV; Sokolova DN; Fedotova VS; Sokolova MP; Nikolaeva AL; Vakulyuk AY; Shakhbazova CY; Ribeiro MCC; Karttunen M; Smirnov MA
    Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012101
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanopaper-based screen-printed electrodes: a hybrid sensing bioplatform for dual opto-electrochemical sensing applications.
    Eynaki H; Kiani MA; Golmohammadi H
    Nanoscale; 2020 Sep; 12(35):18409-18417. PubMed ID: 32941575
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Breaking and Connecting: Highly Hazy and Transparent Regenerated Networked-Nanofibrous Cellulose Films via Combination of Hydrolysis and Crosslinking.
    Aburabie J; Hashaikeh R
    Nanomaterials (Basel); 2022 Aug; 12(15):. PubMed ID: 35957160
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.