These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 35542662)

  • 1. Directional and velocity control of active droplets using a rigid-frame.
    Yamada M; Shigemune H; Maeda S; Sawada H
    RSC Adv; 2019 Dec; 9(69):40523-40530. PubMed ID: 35542662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of different self-propulsion types of oil droplets based on electrostatic interaction effects.
    Noguchi M; Yamada M; Sawada H
    RSC Adv; 2022 Jun; 12(29):18354-18362. PubMed ID: 35799924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial Dynamics in the Spontaneous Motion of an Aqueous Droplet.
    Suematsu NJ; Saikusa K; Nagata T; Izumi S
    Langmuir; 2019 Sep; 35(35):11601-11607. PubMed ID: 31397577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lattice Boltzmann study of chemically-driven self-propelled droplets.
    Fadda F; Gonnella G; Lamura A; Tiribocchi A
    Eur Phys J E Soft Matter; 2017 Dec; 40(12):112. PubMed ID: 29256179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-induced motion control of self-propelled oil droplets using a hydrolyzable gemini cationic surfactant.
    Miura S; Banno T; Tonooka T; Osaki T; Takeuchi S; Toyota T
    Langmuir; 2014 Jul; 30(27):7977-85. PubMed ID: 24934718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-dependent motion of self-propelled droplets due to Marangoni effect at neutral pH.
    Ban T; Yamagami T; Nakata H; Okano Y
    Langmuir; 2013 Feb; 29(8):2554-61. PubMed ID: 23369012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-propulsion of aluminum particle-coated Janus droplet in alkaline solution.
    Li M; Li D
    J Colloid Interface Sci; 2018 Dec; 532():657-665. PubMed ID: 30121518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Start of Micrometer-Sized Oil Droplet Motion through Generation of Surfactants.
    Kasuo Y; Kitahata H; Koyano Y; Takinoue M; Asakura K; Banno T
    Langmuir; 2019 Oct; 35(41):13351-13355. PubMed ID: 31550892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-propelled motion switching in nematic liquid crystal droplets in aqueous surfactant solutions.
    Suga M; Suda S; Ichikawa M; Kimura Y
    Phys Rev E; 2018 Jun; 97(6-1):062703. PubMed ID: 30011466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular System for the Division of Self-Propelled Oil Droplets by Component Feeding.
    Banno T; Toyota T
    Langmuir; 2015 Jun; 31(25):6943-7. PubMed ID: 26073277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oscillating Motion of Oil Droplets in the Emulsion Near the Air-Water Interface.
    Kichatov B; Korshunov A; Sudakov V; Gubernov V; Kolobov A; Korshunova E; Kiverin A
    J Phys Chem B; 2021 Sep; 125(36):10373-10382. PubMed ID: 34470210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deformable Self-Propelled Micro-Object Comprising Underwater Oil Droplets.
    Banno T; Asami A; Ueno N; Kitahata H; Koyano Y; Asakura K; Toyota T
    Sci Rep; 2016 Aug; 6():31292. PubMed ID: 27503336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH-Sensitive self-propelled motion of oil droplets in the presence of cationic surfactants containing hydrolyzable ester linkages.
    Banno T; Kuroha R; Toyota T
    Langmuir; 2012 Jan; 28(2):1190-5. PubMed ID: 22149384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacially-adsorbed particles enhance the self-propulsion of oil droplets in aqueous surfactant.
    Cheon SI; Silva LBC; Khair AS; Zarzar LD
    Soft Matter; 2021 Jul; 17(28):6742-6750. PubMed ID: 34223843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic monitoring of molecular interactions during surfactant-driven self-propelled droplet motion by high spatial resolution waveguide sensing.
    Farkas E; Dóra Kovács K; Szekacs I; Peter B; Lagzi I; Kitahata H; Suematsu NJ; Horvath R
    J Colloid Interface Sci; 2025 Jan; 677(Pt B):352-364. PubMed ID: 39151228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Volatile Droplets on Water are Sculpted by Vigorous Marangoni-Driven Subphase Flow.
    Li Y; Chen Y; Li Y; Stone HA; Pahlavan AA; Granick S
    Langmuir; 2023 Nov; 39(46):16272-16283. PubMed ID: 37948043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-preserving mechanisms in motile oil droplets: a computational model of abiological self-preservation.
    Egbert M
    R Soc Open Sci; 2021 Dec; 8(12):210534. PubMed ID: 34909211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Propelled Motion of Monodisperse Underwater Oil Droplets Formed by a Microfluidic Device.
    Ueno N; Banno T; Asami A; Kazayama Y; Morimoto Y; Osaki T; Takeuchi S; Kitahata H; Toyota T
    Langmuir; 2017 Jun; 33(22):5393-5397. PubMed ID: 28502179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steering Active Emulsions with Liquid Crystals.
    Nayani K; Córdova-Figueroa UM; Abbott NL
    Langmuir; 2020 Jun; 36(25):6948-6956. PubMed ID: 31804839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Locomotion Mode of Micrometer-Sized Oil Droplets in Solutions of Cationic Surfactants Having Ester or Ether Linkages.
    Hirono A; Toyota T; Asakura K; Banno T
    Langmuir; 2018 Jul; 34(26):7821-7826. PubMed ID: 29878786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.