These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35542674)

  • 21. Identification of extremely hard coke generation by low-temperature reaction on tungsten catalysts via Operando and in situ techniques.
    Takkawatakarn T; Praserthdam S; Wannakao S; Panpranot J; Praserthdam P
    Sci Rep; 2021 Apr; 11(1):8071. PubMed ID: 33850178
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of the preparation method and the Co loading on the structure and activity of cobalt oxide/gamma-alumina catalysts for NO reduction by propene.
    Sarellas A; Niakolas D; Bourikas K; Vakros J; Kordulis C
    J Colloid Interface Sci; 2006 Mar; 295(1):165-72. PubMed ID: 16139839
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface characterization and catalytic evaluation of copper-promoted Al-MCM-41 toward hydroxylation of phenol.
    Parida KM; Rath D
    J Colloid Interface Sci; 2009 Dec; 340(2):209-17. PubMed ID: 19782994
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Green oxidation of alkylaromatics using molecular oxygen over mesoporous manganese silicate catalysts.
    Selvaraj M; Bhaumik A; Assiri MA; Subrahmanyam C; Ha CS
    Dalton Trans; 2020 Jul; 49(28):9710-9718. PubMed ID: 32613980
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Olefin Metathesis Catalyzed by a Hoveyda-Grubbs-like Complex Chelated to Bis(2-mercaptoimidazolyl) Methane: A Predictive DFT Study.
    Martínez JP; Trzaskowski B
    J Phys Chem A; 2022 Feb; 126(5):720-732. PubMed ID: 35080885
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Butanol Dehydration over V₂O₅-TiO₂/MCM-41 Catalysts Prepared via Liquid Phase Atomic Layer Deposition.
    Choi H; Bae JH; Kim DH; Park YK; Jeon JK
    Materials (Basel); 2013 Apr; 6(5):1718-1729. PubMed ID: 28809238
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insight into the efficient catalytic conversion of biomass to EG and 1,2-PG over W-Ni bimetallic catalyst.
    Li MQ; Ma YL; Ma XX; Sun YG; Song Z
    RSC Adv; 2018 Mar; 8(20):10907-10913. PubMed ID: 35541540
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparative study of the surface structure, acidity, and catalytic performance of tungstated zirconia prepared from crystalline zirconia or amorphous zirconium oxyhydroxide.
    Lebarbier V; Clet G; Houalla M
    J Phys Chem B; 2006 Jul; 110(28):13905-11. PubMed ID: 16836340
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Study on performance of Ni3 V2O8 catalyst and analysis of X-ray photoelectron spectroscopy].
    Xu AJ; Zhaorigetu B; Jia ML; Lin Q
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Oct; 27(10):2134-8. PubMed ID: 18306814
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Catalytic role of Cu sites of Cu/MCM-41 in phenol hydroxylation.
    Zhang G; Long J; Wang X; Zhang Z; Dai W; Liu P; Li Z; Wu L; Fu X
    Langmuir; 2010 Jan; 26(2):1362-71. PubMed ID: 19938803
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface characterization of WO(3)/ZrO(2) catalysts.
    Vaidyanathan N; Hercules DM; Houalla M
    Anal Bioanal Chem; 2002 Aug; 373(7):547-54. PubMed ID: 12185566
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of WO(x) modification on the activity, adsorption and redox properties of CeO2 catalyst for NO(x) reduction with ammonia.
    Ma Z; Weng D; Wu X; Si Z
    J Environ Sci (China); 2012; 24(7):1305-16. PubMed ID: 23513452
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigating the Influence of Fe Speciation on N
    Richards N; Nowicka E; Carter JH; Morgan DJ; Dummer NF; Golunski S; Hutchings GJ
    Top Catal; 2018; 61(18):1983-1992. PubMed ID: 30930588
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of platinum-iron catalysts supported on MCM-41 synthesized with rice husk silica and their performance for phenol hydroxylation.
    Chumee J; Grisdanurak N; Neramittagapong A; Wittayakun J
    Sci Technol Adv Mater; 2009 Feb; 10(1):015006. PubMed ID: 27877269
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation of the WO
    Huang Y; Zhang G; Zhang Q
    ACS Omega; 2021 Feb; 6(5):3875-3883. PubMed ID: 33585766
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of Co and Fe-MCM-56 catalysts for NH
    Grzybek J; Gil B; Roth WJ; Skoczek M; Kowalczyk A; Chmielarz L
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 May; 196():281-288. PubMed ID: 29459158
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In situ generation of active sites in olefin metathesis.
    Amakawa K; Wrabetz S; Kröhnert J; Tzolova-Müller G; Schlögl R; Trunschke A
    J Am Chem Soc; 2012 Jul; 134(28):11462-73. PubMed ID: 22703234
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CO
    Wang X; Zhu L; Liu Y; Wang S
    Sci Total Environ; 2018 Jun; 625():686-695. PubMed ID: 29306156
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Water-Tolerant Boron-Substituted MCM-41 for Oxidative Dehydrogenation of Propane.
    Liu Q; Wang J; Liu Z; Zhao R; Xu A; Jia M
    ACS Omega; 2022 Jan; 7(3):3083-3092. PubMed ID: 35097303
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Re-based heterogeneous catalysts for olefin metathesis prepared by surface organometallic chemistry: reactivity and selectivity.
    Chabanas M; Copéret C; Basset JM
    Chemistry; 2003 Feb; 9(4):971-5. PubMed ID: 12584713
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.