These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 35542725)
21. N-Type Surface Design for p-Type CZTSSe Thin Film to Attain High Efficiency. Sun Y; Qiu P; Yu W; Li J; Guo H; Wu L; Luo H; Meng R; Zhang Y; Liu SF Adv Mater; 2021 Dec; 33(49):e2104330. PubMed ID: 34623707 [TBL] [Abstract][Full Text] [Related]
22. Promoting effect of lanthanum doping on photovoltaic performance of CZTSSe solar cells. Luo Z; Yu L; Zheng T; Dong X; Yang F; Chen J; Zhang X; Zhao Y; Li Y J Chem Phys; 2024 Apr; 160(16):. PubMed ID: 38656442 [TBL] [Abstract][Full Text] [Related]
23. Toward High Efficient Cu Wang Z; Meng R; Guo H; Sun Y; Liu Y; Zhang H; Cao Z; Dong J; Xu X; Liang G; Lou L; Li D; Meng Q; Zhang Y Small; 2023 Jun; 19(22):e2300634. PubMed ID: 36855059 [TBL] [Abstract][Full Text] [Related]
24. Two-Step Annealing CZTSSe/CdS Heterojunction to Improve Interface Properties of Kesterite Solar Cells. Duan B; Lou L; Meng F; Zhou J; Wang J; Shi J; Wu H; Luo Y; Li D; Meng Q ACS Appl Mater Interfaces; 2021 Nov; 13(46):55243-55253. PubMed ID: 34751555 [TBL] [Abstract][Full Text] [Related]
25. 11.88% Efficient Flexible Ag-Free CZTSSe Solar Cell: Spontaneously Tailoring the Alkali Metal Level. Xu H; Meng R; Xu X; Liu Y; Sun Y; Zhang Y Small; 2024 Dec; 20(51):e2408122. PubMed ID: 39394870 [TBL] [Abstract][Full Text] [Related]
26. Device Characteristics of Band gap Tailored 10.04% Efficient CZTSSe Solar Cells Sprayed from Water-Based Solution. Enkhbat T; Kim S; Kim J ACS Appl Mater Interfaces; 2019 Oct; 11(40):36735-36741. PubMed ID: 31532194 [TBL] [Abstract][Full Text] [Related]
27. Cation Substitution in Earth-Abundant Kesterite Photovoltaic Materials. Li J; Wang D; Li X; Zeng Y; Zhang Y Adv Sci (Weinh); 2018 Apr; 5(4):1700744. PubMed ID: 29721421 [TBL] [Abstract][Full Text] [Related]
28. High efficiency Cu2ZnSn(S,Se)4 solar cells by applying a double In2S3/CdS emitter. Kim J; Hiroi H; Todorov TK; Gunawan O; Kuwahara M; Gokmen T; Nair D; Hopstaken M; Shin B; Lee YS; Wang W; Sugimoto H; Mitzi DB Adv Mater; 2014 Nov; 26(44):7427-31. PubMed ID: 25155874 [TBL] [Abstract][Full Text] [Related]
29. Band-gap-graded Cu2ZnSn(S1-x,Se(x))4 solar cells fabricated by an ethanol-based, particulate precursor ink route. Woo K; Kim Y; Yang W; Kim K; Kim I; Oh Y; Kim JY; Moon J Sci Rep; 2013 Oct; 3():3069. PubMed ID: 24166151 [TBL] [Abstract][Full Text] [Related]
30. Formation of Alloyed Cu Li S; Yang Y; Wang Y; Ren S; Wang L; Siqin L; Mi Y; Cui G; Liu R; Luan H; Zhu C ACS Appl Mater Interfaces; 2024 Oct; 16(42):57209-57217. PubMed ID: 39380358 [TBL] [Abstract][Full Text] [Related]
31. Flexible High-Efficiency CZTSSe Solar Cells on Diverse Flexible Substrates via an Adhesive-Bonding Transfer Method. Min JH; Jeong WL; Kim K; Lee JS; Kim KP; Kim J; Gang MG; Hong CW; Kim JH; Lee DS ACS Appl Mater Interfaces; 2020 Feb; 12(7):8189-8197. PubMed ID: 31994389 [TBL] [Abstract][Full Text] [Related]
32. Insight into the Role of Rb Doping for Highly Efficient Kesterite Cu Miao C; Sui Y; Cui Y; Wang Z; Yang L; Wang F; Liu X; Yao B Molecules; 2024 Aug; 29(15):. PubMed ID: 39125076 [TBL] [Abstract][Full Text] [Related]
33. Revealing the reason for enhanced CZTSSe device performance after Ag heavily doped into absorber surface. Wang S; Shen Z; Liu Y; Zhang Y J Chem Phys; 2024 Mar; 160(9):. PubMed ID: 38445737 [TBL] [Abstract][Full Text] [Related]
34. Improving the performance of kesterite solar cells by solution germanium alloying. Xiang S; Li Y; Xiang C; Liu H; Zheng Y; Wang S; Yan W; Xin H Phys Chem Chem Phys; 2024 Jul; 26(30):20645-20652. PubMed ID: 39037460 [TBL] [Abstract][Full Text] [Related]
35. Kesterite Cu2Zn(Sn,Ge)(S,Se)4 thin film with controlled Ge-doping for photovoltaic application. Zhao W; Pan D; Liu SF Nanoscale; 2016 May; 8(19):10160-5. PubMed ID: 27121893 [TBL] [Abstract][Full Text] [Related]
36. Insight into the Effect of Selenization Temperature for Highly Efficient Ni-Doped Cu Zeng F; Sui Y; Ma M; Zhao N; Wang T; Wang Z; Yang L; Wang F; Li H; Yao B Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36079979 [TBL] [Abstract][Full Text] [Related]
37. Facile Tailor on the Surface of Mo Foil Toward High-Efficient Flexible CZTSSe Solar Cells. Xu H; Meng R; Xu X; Wu L; Sun Y; Liu Y; Wang Z; Wang N; Li M; Zhang Y Small Methods; 2024 Oct; ():e2401084. PubMed ID: 39351802 [TBL] [Abstract][Full Text] [Related]
38. Using Cu-Zn-Sn-O Precursor to Optimize CZTSSe Thin Films Fabricated by Se Doping With CZTS Thin Films. Li Q; Hu J; Cui Y; Wang J; Hao Y; Shen T; Duan L Front Chem; 2021; 9():621549. PubMed ID: 33937187 [TBL] [Abstract][Full Text] [Related]
39. Aqueous-Solution-Processed Cu Suryawanshi MP; Ghorpade UV; Suryawanshi UP; He M; Kim J; Gang MG; Patil PS; Moholkar AV; Yun JH; Kim JH ACS Omega; 2017 Dec; 2(12):9211-9220. PubMed ID: 31457436 [TBL] [Abstract][Full Text] [Related]
40. Suppressing Element Inhomogeneity Enables 14.9% Efficiency CZTSSe Solar Cells. Li Y; Cui C; Wei H; Shao Z; Wu Z; Zhang S; Wang X; Pang S; Cui G Adv Mater; 2024 Jun; 36(25):e2400138. PubMed ID: 38402444 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]