BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35542729)

  • 1. Adsorption characteristics of Cd(ii) in aqueous solutions using spent mushroom substrate biochars produced at different pyrolysis temperatures.
    Xian Y; Wu J; Yang G; Liao R; Zhang X; Peng H; Yu X; Shen F; Li L; Wang L
    RSC Adv; 2018 Aug; 8(49):28002-28012. PubMed ID: 35542729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of Congo Red and Methylene Blue from Aqueous Solutions by Vermicompost-Derived Biochars.
    Yang G; Wu L; Xian Q; Shen F; Wu J; Zhang Y
    PLoS One; 2016; 11(5):e0154562. PubMed ID: 27144922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of biochar by mango peel and its adsorption characteristics of Cd(ii) in solution.
    Zhang L; Ren Y; Xue Y; Cui Z; Wei Q; Han C; He J
    RSC Adv; 2020 Sep; 10(59):35878-35888. PubMed ID: 35517110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of biochars derived from various spent mushroom substrates and evaluation of their adsorption performance of Cu(II) ions from aqueous solution.
    Jin Y; Zhang M; Jin Z; Wang G; Li R; Zhang X; Liu X; Qu J; Wang H
    Environ Res; 2021 May; 196():110323. PubMed ID: 33098819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of silica-composited biochars from alkali-fused fly ash and agricultural wastes for enhanced adsorption of methylene blue.
    Wang K; Peng N; Sun J; Lu G; Chen M; Deng F; Dou R; Nie L; Zhong Y
    Sci Total Environ; 2020 Aug; 729():139055. PubMed ID: 32388132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Removal of Cu(II), Zn(II), and Cd(II) from Aqueous Solutions by a Mineral-Rich Biochar Derived from a Spent Mushroom (
    Zhang G; Liu N; Luo Y; Zhang H; Su L; Oh K; Cheng H
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33374884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Adsorption of Cd(II) varies with biochars derived at different pyrolysis temperatures].
    Wang ZY; Liu GC; Monica X; Li FM; Zheng H
    Huan Jing Ke Xue; 2014 Dec; 35(12):4735-44. PubMed ID: 25826948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Cadmium adsorption by biochar prepared from pyrolysis of silk waste at different temperatures].
    Ji HY; Wang YY; Lyu HH; Liu YX; Yang RQ; Yang SM
    Ying Yong Sheng Tai Xue Bao; 2018 Apr; 29(4):1328-1338. PubMed ID: 29726244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cadmium adsorption characteristics of biochars derived using various pine tree residues and pyrolysis temperatures.
    Park JH; Wang JJ; Kim SH; Kang SW; Jeong CY; Jeon JR; Park KH; Cho JS; Delaune RD; Seo DC
    J Colloid Interface Sci; 2019 Oct; 553():298-307. PubMed ID: 31212229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective removal of Hg(II) and MeHg from aqueous environment by ball milling aided thiol-modification of biochars: Effect of different pyrolysis temperatures.
    Zhao L; Zhang Y; Wang L; Lyu H; Xia S; Tang J
    Chemosphere; 2022 May; 294():133820. PubMed ID: 35104542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of temperature and duration of pyrolysis on spent tea leaves biochar: physiochemical properties and Cd(II) adsorption capacity.
    Yang Z; Liu X; Zhang M; Liu L; Xu X; Xian J; Cheng Z
    Water Sci Technol; 2020 Jun; 81(12):2533-2544. PubMed ID: 32857741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Qualitative and quantitative investigation on adsorption mechanisms of Cd(II) on modified biochar derived from co-pyrolysis of straw and sodium phytate.
    Sun D; Li F; Jin J; Khan S; Eltohamy KM; He M; Liang X
    Sci Total Environ; 2022 Jul; 829():154599. PubMed ID: 35306071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms for cadmium adsorption by magnetic biochar composites in an aqueous solution.
    Khan ZH; Gao M; Qiu W; Islam MS; Song Z
    Chemosphere; 2020 May; 246():125701. PubMed ID: 31891847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate.
    Gai X; Wang H; Liu J; Zhai L; Liu S; Ren T; Liu H
    PLoS One; 2014; 9(12):e113888. PubMed ID: 25469875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochar properties and lead(II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation.
    Kwak JH; Islam MS; Wang S; Messele SA; Naeth MA; El-Din MG; Chang SX
    Chemosphere; 2019 Sep; 231():393-404. PubMed ID: 31146131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Monovalent and Divalent Ions Removal from Aqueous Solutions Using Agricultural Waste Biochars Prepared at Different Temperatures-Experimental and Model Study.
    Tomczyk A; Sokołowska Z; Boguta P; Szewczuk-Karpisz K
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32824005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrate-Nitrogen Adsorption Characteristics and Mechanisms of Various Garden Waste Biochars.
    Yao J; Wang Z; Liu M; Bai B; Zhang C
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37630017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison study on the ammonium adsorption of the biochars derived from different kinds of fruit peel.
    Hu X; Zhang X; Ngo HH; Guo W; Wen H; Li C; Zhang Y; Ma C
    Sci Total Environ; 2020 Mar; 707():135544. PubMed ID: 31784163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peat moss-derived biochars as effective sorbents for VOCs' removal in groundwater.
    Kim J; Lee SS; Khim J
    Environ Geochem Health; 2019 Aug; 41(4):1637-1646. PubMed ID: 28780675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of microcystin contaminants by biochars derived from contrasting pyrolytic conditions: Characteristics, affecting factors, and mechanisms.
    Liu BL; Fu MM; Xiang L; Feng NX; Zhao HM; Li YW; Cai QY; Li H; Mo CH; Wong MH
    Sci Total Environ; 2021 Apr; 763():143028. PubMed ID: 33129529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.