BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35542752)

  • 1. AFM-thermoreflectance for simultaneous measurements of the topography and temperature.
    Rho J; Lim M; Lee SS; Lee BJ
    RSC Adv; 2018 Aug; 8(49):27616-27622. PubMed ID: 35542752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental setup for thermal measurements at the nanoscale using a SThM probe with niobium nitride thermometer.
    Swami R; Julié G; Le-Denmat S; Pernot G; Singhal D; Paterson J; Maire J; Motte JF; Paillet N; Guillou H; Gomès S; Bourgeois O
    Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38814363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal mapping of a scanning thermal microscopy tip.
    Jóźwiak G; Wielgoszewski G; Gotszalk T; Kępiński L
    Ultramicroscopy; 2013 Oct; 133():80-7. PubMed ID: 23933596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra-high vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry.
    Kim K; Jeong W; Lee W; Reddy P
    ACS Nano; 2012 May; 6(5):4248-57. PubMed ID: 22530657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enabling low-noise null-point scanning thermal microscopy by the optimization of scanning thermal microscope probe through a rigorous theory of quantitative measurement.
    Hwang G; Chung J; Kwon O
    Rev Sci Instrum; 2014 Nov; 85(11):114901. PubMed ID: 25430136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the Limits of Scanning Thermal Microscopy of Ultrathin Films.
    Metzke C; Frammelsberger W; Weber J; Kühnel F; Zhu K; Lanza M; Benstetter AG
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31978971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pico-Watt Scanning Thermal Microscopy for Thermal Energy Transport Investigation in Atomic Materials.
    Koo S; Park J; Kim K
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scanning thermal microscopy with heat conductive nanowire probes.
    Timofeeva M; Bolshakov A; Tovee PD; Zeze DA; Dubrovskii VG; Kolosov OV
    Ultramicroscopy; 2016 Mar; 162():42-51. PubMed ID: 26735005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal nanometrology using piezoresistive SThM probes with metallic tips.
    Janus P; Sierakowski A; Rudek M; Kunicki P; Dzierka A; Biczysko P; Gotszalk T
    Ultramicroscopy; 2018 Oct; 193():104-110. PubMed ID: 29975873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale temperature sensing of electronic devices with calibrated scanning thermal microscopy.
    Swoboda T; Wainstein N; Deshmukh S; Köroğlu Ç; Gao X; Lanza M; Hilgenkamp H; Pop E; Yalon E; Muñoz Rojo M
    Nanoscale; 2023 Apr; 15(15):7139-7146. PubMed ID: 37006192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scanning Thermal Microscopy of Ultrathin Films: Numerical Studies Regarding Cantilever Displacement, Thermal Contact Areas, Heat Fluxes, and Heat Distribution.
    Metzke C; Kühnel F; Weber J; Benstetter G
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33669205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative Mapping of Unmodulated Temperature Fields with Nanometer Resolution.
    Reihani A; Luan Y; Yan S; Lim JW; Meyhofer E; Reddy P
    ACS Nano; 2022 Jan; 16(1):939-950. PubMed ID: 34958551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices.
    Gysin U; Glatzel T; Schmölzer T; Schöner A; Reshanov S; Bartolf H; Meyer E
    Beilstein J Nanotechnol; 2015; 6():2485-97. PubMed ID: 26885461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High resolution direct measurement of temperature distribution in silicon nanophotonics devices.
    Tzur M; Desiatov B; Goykhman I; Grajower M; Levy U
    Opt Express; 2013 Dec; 21(24):29195-204. PubMed ID: 24514471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-Localized Thermal Analysis and Mapping of Surface and Sub-Surface Thermal Properties Using Scanning Thermal Microscopy (SThM).
    Pereira MJ; Amaral JS; Silva NJ; Amaral VS
    Microsc Microanal; 2016 Dec; 22(6):1270-1280. PubMed ID: 27869043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale resolution scanning thermal microscopy using carbon nanotube tipped thermal probes.
    Tovee PD; Pumarol ME; Rosamond MC; Jones R; Petty MC; Zeze DA; Kolosov OV
    Phys Chem Chem Phys; 2014 Jan; 16(3):1174-81. PubMed ID: 24292551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High Throughput Nanoimaging of Thermal Conductivity and Interfacial Thermal Conductance.
    Wang M; Ramer G; Perez-Morelo DJ; Pavlidis G; Schwartz JJ; Yu L; Ilic R; Aksyuk VA; Centrone A
    Nano Lett; 2022 Jun; 22(11):4325-4332. PubMed ID: 35579622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative temperature distribution measurements by non-contact scanning thermal microscopy using Wollaston probes under ambient conditions.
    Zhang Y; Zhu W; Han L; Borca-Tasciuc T
    Rev Sci Instrum; 2020 Jan; 91(1):014901. PubMed ID: 32012522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing Surface Electrochemical Activity of Nanomaterials using a Hybrid Atomic Force Microscope-Scanning Electrochemical Microscope (AFM-SECM).
    Shi X; Ma Q; Marhaba T; Zhang W
    J Vis Exp; 2021 Feb; (168):. PubMed ID: 33645554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A MEMS nanoindenter with an integrated AFM cantilever gripper for nanomechanical characterization of compliant materials.
    Li Z; Gao S; Brand U; Hiller K; Wolff H
    Nanotechnology; 2020 Jul; 31(30):305502. PubMed ID: 32289758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.