These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35542812)

  • 1. Hydrate slurry flow property in W/O emulsion systems.
    Shi B; Ding L; Liu Y; Yang J; Song S; Wu H; Wang W; Gong J
    RSC Adv; 2018 Mar; 8(21):11436-11445. PubMed ID: 35542812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental study of growth kinetics of CO
    Lv XF; Zuo JW; Liu Y; Zhou SD; Lu DY; Yan KL; Shi BH; Zhao HJ
    RSC Adv; 2019 Oct; 9(56):32873-32888. PubMed ID: 35529764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functionalized Nanoparticles for the Dispersion of Gas Hydrates in Slurry Flow.
    Zhang X; Gong J; Yang X; Slupe B; Jin J; Wu N; Sum AK
    ACS Omega; 2019 Aug; 4(8):13496-13508. PubMed ID: 31460479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on the decomposition mechanism and kinetic model of natural gas hydrate slurry in water-in-oil emulsion flowing systems.
    Lv X; Liu Y; Zhou S; Shi B; Yan K
    RSC Adv; 2021 Jan; 11(7):3879-3889. PubMed ID: 35424369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on the Formation Characteristics of CO
    Lv X; Zhang J; Zuo J; Zhao D; Liu Y; Zhou S; Du H; Song S
    ACS Omega; 2022 Jan; 7(2):2444-2457. PubMed ID: 35071932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental study on hydrate anti-agglomeration in the presence of rhamnolipid.
    Hou G; Liang D; Li X
    RSC Adv; 2018 Nov; 8(69):39511-39519. PubMed ID: 35558046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Study of the Growth Kinetics of Natural Gas Hydrates in an Oil-Water Emulsion System.
    Lv X; Zhang J; Zhao Y; Liu Y; Xu J; Ma Q; Song S; Zhou S
    ACS Omega; 2022 Jan; 7(1):599-616. PubMed ID: 35036727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical Simulation of Swirl Flow Characteristics of CO
    Rao Y; Liu Z; Wang S; Li L; Sun Q
    Entropy (Basel); 2021 Jul; 23(7):. PubMed ID: 34356454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical Simulation Study on Flow Laws and Heat Transfer of Gas Hydrate in the Spiral Flow Pipeline with Long Twisted Band.
    Rao Y; Li L; Wang S; Zhao S; Zhou S
    Entropy (Basel); 2021 Apr; 23(4):. PubMed ID: 33924044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New in Situ Measurements of the Viscosity of Gas Clathrate Hydrate Slurries Formed from Model Water-in-Oil Emulsions.
    Majid AAA; Wu DT; Koh CA
    Langmuir; 2017 Oct; 33(42):11436-11445. PubMed ID: 28926254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of the Comprehensive Kinetic Model of Natural Gas Hydrate Formation in a Water-in-Oil Emulsion Flow System.
    Lv X; Liu Y; Shi B; Zhou S; Lei Y; Yu P; Duan J
    ACS Omega; 2020 Dec; 5(51):33101-33112. PubMed ID: 33403272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on the growth rate of natural gas hydrate in water-in-oil emulsion system using a high-pressure flow loop.
    Lv X; Shi B; Zhou S; Peng H; Lei Y; Yu P
    RSC Adv; 2018 Oct; 8(64):36484-36492. PubMed ID: 35558950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation into THF hydrate slurry flow behaviour and inhibition by an anti-agglomerant.
    Zhang H; Du J; Wang Y; Lang X; Li G; Chen J; Fan S
    RSC Adv; 2018 Mar; 8(22):11946-11956. PubMed ID: 35539396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the blockage mechanism of carbon dioxide hydrate slurry and its microscopic particle characteristics.
    Lv X; Li W; Shi B; Zhou S
    RSC Adv; 2018 Oct; 8(64):36959-36969. PubMed ID: 35558936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitory influence of amino acids on the formation kinetics of methane hydrates in oil-water and oil-brine systems.
    Almashwali AA; Khan MS; Lal B; Jin QC; Sabil KM; Khor SF
    Chemosphere; 2023 Jan; 312(Pt 2):137325. PubMed ID: 36423723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation on Hydrate Growth at the Oil-Water Interface: In the Presence of Wax and Surfactant.
    Song G; Ning Y; Guo P; Li Y; Wang W
    Langmuir; 2021 Jun; 37(22):6838-6845. PubMed ID: 34036780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical investigation on the solid particle erosion in elbow with water-hydrate-solid flow.
    Zhang L; Zhou J; Zhang B; Gong W
    Sci Prog; 2020; 103(1):36850419897245. PubMed ID: 31875772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrate Growth on Methane Gas Bubbles in the Presence of Salt.
    Yu LCY; Charlton TB; Aman ZM; Wu DT; Koh CA
    Langmuir; 2020 Jan; 36(1):84-95. PubMed ID: 31820993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Premelting-Induced Agglomeration of Hydrates: Theoretical Analysis and Modeling.
    Nguyen NN; Berger R; Butt HJ
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):14599-14606. PubMed ID: 32125147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined Approach to Evaluate Hydrate Slurry Transport Properties through Wetting and Flow Experiments.
    Fossen M; Hatscher S; Ugueto L
    ACS Omega; 2023 Jan; 8(3):2992-3006. PubMed ID: 36713740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.