These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 35543204)

  • 1. Computational studies on the possible formation of glycine
    Thripati S
    Org Biomol Chem; 2022 May; 20(20):4189-4203. PubMed ID: 35543204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathways for the Formation of Formamide, a Prebiotic Biomonomer: Metal-Ions in Interstellar Gas-Phase Chemistry.
    Thripati S; Ramabhadran RO
    J Phys Chem A; 2021 Apr; 125(16):3457-3472. PubMed ID: 33861935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Possible interstellar formation of glycine through a concerted mechanism: a computational study on the reaction of CH2[double bond, length as m-dash]NH, CO2 and H2.
    Nhlabatsi ZP; Bhasi P; Sitha S
    Phys Chem Chem Phys; 2016 Jul; 18(30):20109-17. PubMed ID: 27043445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gas-phase formation of glycolonitrile in the interstellar medium.
    Guerrero-Méndez L; Lema-Saavedra A; Jiménez E; Fernández-Ramos A; Martínez-Núñez E
    Phys Chem Chem Phys; 2023 Aug; 25(31):20988-20996. PubMed ID: 37503548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation routes of interstellar glycine involving carboxylic acids: possible favoritism between gas and solid phase.
    Pilling S; Baptista L; Boechat-Roberty HM; Andrade DP
    Astrobiology; 2011 Nov; 11(9):883-93. PubMed ID: 22066498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemiaminal route for the formation of interstellar glycine: a computational study.
    Nhlabatsi ZP; Bhasi P; Sitha S
    J Mol Model; 2019 Nov; 25(11):335. PubMed ID: 31705313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of interstellar amino acetonitrile in the hot molecular core G10.47+0.03: Possible glycine survey candidate for the future.
    Manna A; Pal S
    Life Sci Space Res (Amst); 2022 Aug; 34():9-15. PubMed ID: 35940693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gas-Phase vs. Grain-Surface Formation of Interstellar Complex Organic Molecules: A Comprehensive Quantum-Chemical Study.
    Martínez-Bachs B; Rimola A
    Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical Study of Possible Reaction Mechanisms for the Formation of Carbodiimide in the Interstellar Medium (ISM) and Polarizabilities of Carbodiimide.
    Yadav M; Shivani ; Misra A; Tandon P
    Orig Life Evol Biosph; 2019 Jun; 49(1-2):89-103. PubMed ID: 31218479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-energetic, Low-Temperature Formation of C
    Schneiker A; Góbi S; Joshi PR; Bazsó G; Lee YP; Tarczay G
    J Phys Chem Lett; 2021 Jul; 12(28):6744-6751. PubMed ID: 34264091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silicate-mediated interstellar water formation: A theoretical study.
    Molpeceres G; Rimola A; Ceccarelli C; Kästner J; Ugliengo P; Maté B
    Mon Not R Astron Soc; 2019 May; 482(2):5389-5400. PubMed ID: 31156274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic Search for Chemical Reactions in Gas Phase Contributing to Methanol Formation in Interstellar Space.
    Gamez-Garcia VG; Galano A
    J Phys Chem A; 2017 Oct; 121(39):7393-7400. PubMed ID: 28885025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A surprisingly complex aqueous chemistry of the simplest amino acid. A pulse radiolysis and theoretical study on H/D kinetic isotope effects in the reaction of glycine anions with hydroxyl radicals.
    Stefanić I; Ljubić I; Bonifacić M; Sabljić A; Asmus KD; Armstrong DA
    Phys Chem Chem Phys; 2009 Apr; 11(13):2256-67. PubMed ID: 19305899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possible interstellar formation of glycine from the reaction of CH2=NH, CO and H2O: catalysis by extra water molecules through the hydrogen relay transport.
    Nhlabatsi ZP; Bhasi P; Sitha S
    Phys Chem Chem Phys; 2016 Jan; 18(1):375-81. PubMed ID: 26616741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In search of phosphorus in astronomical environments: The reaction between the CP radical (X
    Alessandrini S; Tonolo F; Puzzarini C
    J Chem Phys; 2021 Feb; 154(5):054306. PubMed ID: 33557562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial distributions and interstellar reaction processes.
    Neill JL; Steber AL; Muckle MT; Zaleski DP; Lattanzi V; Spezzano S; McCarthy MC; Remijan AJ; Friedel DN; Widicus Weaver SL; Pate BH
    J Phys Chem A; 2011 Jun; 115(24):6472-80. PubMed ID: 21591798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low temperature rates for key steps of interstellar gas-phase water formation.
    Kumar SS; Grussie F; Suleimanov YV; Guo H; Kreckel H
    Sci Adv; 2018 Jun; 4(6):eaar3417. PubMed ID: 29942857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supercell calculations of the geometry and lattice energy of α-glycine crystal.
    Xavier NF; Da Silva AM; Bauerfeldt GF
    J Mol Model; 2019 Jul; 25(8):244. PubMed ID: 31342179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical Investigation of a Vital Step in the Gas-Phase Formation of Interstellar Ammonia NH
    Mohandas S; Ramabhadran RO; Kumar SS
    J Phys Chem A; 2020 Oct; 124(41):8373-8382. PubMed ID: 32870677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The formation of glycine and other complex organic molecules in exploding ice mantles.
    Rawlings JM; Williams DA; Viti S; Cecchi-Pestellini C; Duley WW
    Faraday Discuss; 2014; 168():369-88. PubMed ID: 25302390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.