These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 35543489)
1. A Simple and Efficient Strategy for Preparing a Cell-Spheroid-Based Bioink. Sun W; Zhang J; Qin Y; Tang H; Chen Y; Lin W; She Y; Zhang K; Yin J; Chen C Adv Healthc Mater; 2022 Aug; 11(15):e2200648. PubMed ID: 35543489 [TBL] [Abstract][Full Text] [Related]
2. A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs. Skardal A; Devarasetty M; Kang HW; Mead I; Bishop C; Shupe T; Lee SJ; Jackson J; Yoo J; Soker S; Atala A Acta Biomater; 2015 Oct; 25():24-34. PubMed ID: 26210285 [TBL] [Abstract][Full Text] [Related]
3. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992 [TBL] [Abstract][Full Text] [Related]
4. Thermoresponsive poly(N-isopropylacrylamide) hydrogel substrates micropatterned with poly(ethylene glycol) hydrogel for adipose mesenchymal stem cell spheroid formation and retrieval. Kim G; Jung Y; Cho K; Lee HJ; Koh WG Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():111128. PubMed ID: 32600725 [TBL] [Abstract][Full Text] [Related]
5. Bioprinting Cellularized Constructs Using a Tissue-specific Hydrogel Bioink. Skardal A; Devarasetty M; Kang HW; Seol YJ; Forsythe SD; Bishop C; Shupe T; Soker S; Atala A J Vis Exp; 2016 Apr; (110):e53606. PubMed ID: 27166839 [TBL] [Abstract][Full Text] [Related]
6. Dynamic hyaluronic acid hydrogel with covalent linked gelatin as an anti-oxidative bioink for cartilage tissue engineering. Shi W; Fang F; Kong Y; Greer SE; Kuss M; Liu B; Xue W; Jiang X; Lovell P; Mohs AM; Dudley AT; Li T; Duan B Biofabrication; 2021 Dec; 14(1):. PubMed ID: 34905737 [TBL] [Abstract][Full Text] [Related]
7. Tuning the Phenotype of Cartilage Tissue Mimics by Varying Spheroid Maturation and Methacrylamide-Modified Gelatin Hydrogel Characteristics. De Moor L; Minne M; Tytgat L; Vercruysse C; Dubruel P; Van Vlierberghe S; Declercq H Macromol Biosci; 2021 May; 21(5):e2000401. PubMed ID: 33729714 [TBL] [Abstract][Full Text] [Related]
8. Dipeptide Self-Assembled Hydrogels with Tunable Mechanical Properties and Degradability for 3D Bioprinting. Jian H; Wang M; Dong Q; Li J; Wang A; Li X; Ren P; Bai S ACS Appl Mater Interfaces; 2019 Dec; 11(50):46419-46426. PubMed ID: 31769283 [TBL] [Abstract][Full Text] [Related]
9. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties. Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655 [TBL] [Abstract][Full Text] [Related]
10. Solid multifunctional granular bioink for constructing chondroid basing on stem cell spheroids and chondrocytes. Zhang L; Tang H; Xiahou Z; Zhang J; She Y; Zhang K; Hu X; Yin J; Chen C Biofabrication; 2022 Apr; 14(3):. PubMed ID: 35378518 [TBL] [Abstract][Full Text] [Related]
11. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Daly AC; Critchley SE; Rencsok EM; Kelly DJ Biofabrication; 2016 Oct; 8(4):045002. PubMed ID: 27716628 [TBL] [Abstract][Full Text] [Related]
12. 3D bioprinting of photo-crosslinkable silk methacrylate (SilMA)-polyethylene glycol diacrylate (PEGDA) bioink for cartilage tissue engineering. Bandyopadhyay A; Mandal BB; Bhardwaj N J Biomed Mater Res A; 2022 Apr; 110(4):884-898. PubMed ID: 34913587 [TBL] [Abstract][Full Text] [Related]
13. Development and quantitative characterization of the precursor rheology of hyaluronic acid hydrogels for bioprinting. Kiyotake EA; Douglas AW; Thomas EE; Nimmo SL; Detamore MS Acta Biomater; 2019 Sep; 95():176-187. PubMed ID: 30669003 [TBL] [Abstract][Full Text] [Related]
14. Engineered biomaterials to guide spheroid formation, function, and fabrication into 3D tissue constructs. Caprio ND; Burdick JA Acta Biomater; 2023 Jul; 165():4-18. PubMed ID: 36167240 [TBL] [Abstract][Full Text] [Related]
15. Scaffolded spheroids as building blocks for bottom-up cartilage tissue engineering show enhanced bioassembly dynamics. Kopinski-Grünwald O; Guillaume O; Ferner T; Schädl B; Ovsianikov A Acta Biomater; 2024 Jan; 174():163-176. PubMed ID: 38065247 [TBL] [Abstract][Full Text] [Related]
16. Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances. Chakraborty A; Roy A; Ravi SP; Paul A Biomater Sci; 2021 Sep; 9(19):6337-6354. PubMed ID: 34397056 [TBL] [Abstract][Full Text] [Related]
17. Modified mannan for 3D bioprinting: a potential novel bioink for tissue engineering. Huang Y; Zhou Z; Hu Y; He N; Li J; Han X; Zhao G; Liu H Biomed Mater; 2021 Aug; 16(5):. PubMed ID: 34348252 [TBL] [Abstract][Full Text] [Related]
18. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs. Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883 [TBL] [Abstract][Full Text] [Related]
19. Skeletal Muscle Spheroids as Building Blocks for Engineered Muscle Tissue. Johnson N; Filler AC; Sethi A; Smith LR; Leach JK ACS Biomater Sci Eng; 2024 Jan; 10(1):497-506. PubMed ID: 38113146 [TBL] [Abstract][Full Text] [Related]
20. Bioprinting and Differentiation of Adipose-Derived Stromal Cell Spheroids for a 3D Breast Cancer-Adipose Tissue Model. Horder H; Guaza Lasheras M; Grummel N; Nadernezhad A; Herbig J; Ergün S; Teßmar J; Groll J; Fabry B; Bauer-Kreisel P; Blunk T Cells; 2021 Apr; 10(4):. PubMed ID: 33916870 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]