These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35543584)

  • 1. KeratoScreen: Early Keratoconus Classification With Zernike Polynomial Using Deep Learning.
    Gao HB; Pan ZG; Shen MX; Lu F; Li H; Zhang XQ
    Cornea; 2022 Sep; 41(9):1158-1165. PubMed ID: 35543584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristic of entire corneal topography and tomography for the detection of sub-clinical keratoconus with Zernike polynomials using Pentacam.
    Xu Z; Li W; Jiang J; Zhuang X; Chen W; Peng M; Wang J; Lu F; Shen M; Wang Y
    Sci Rep; 2017 Nov; 7(1):16486. PubMed ID: 29184086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel zernike application to differentiate between three-dimensional corneal thickness of normal corneas and corneas with keratoconus.
    Shetty R; Matalia H; Srivatsa P; Ghosh A; Dupps WJ; Sinha Roy A
    Am J Ophthalmol; 2015 Sep; 160(3):453-462.e2. PubMed ID: 26067190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of a scheimpflug-based biomechanical analyser and tomography in the early detection of subclinical keratoconus in chinese patients.
    Liu Y; Zhang Y; Chen Y
    BMC Ophthalmol; 2021 Sep; 21(1):339. PubMed ID: 34544392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of a support vector machine for keratoconus and subclinical keratoconus detection by topographic and tomographic data.
    Arbelaez MC; Versaci F; Vestri G; Barboni P; Savini G
    Ophthalmology; 2012 Nov; 119(11):2231-8. PubMed ID: 22892148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening Candidates for Refractive Surgery With Corneal Tomographic-Based Deep Learning.
    Xie Y; Zhao L; Yang X; Wu X; Yang Y; Huang X; Liu F; Xu J; Lin L; Lin H; Feng Q; Lin H; Liu Q
    JAMA Ophthalmol; 2020 May; 138(5):519-526. PubMed ID: 32215587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subclinical keratoconus detection with three-dimensional (3-D) morphogeometric and volumetric analysis.
    Toprak I; Cavas F; Velázquez JS; Alio Del Barrio JL; Alio JL
    Acta Ophthalmol; 2020 Dec; 98(8):e933-e942. PubMed ID: 32410342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Characteristics of corneal topography in parents of keratoconus patients].
    Li J; Jing LL; Du XL
    Zhonghua Yan Ke Za Zhi; 2020 Jun; 56(6):456-464. PubMed ID: 32842328
    [No Abstract]   [Full Text] [Related]  

  • 9. [Suitability of various topographic corneal parameters for diagnosis of early keratoconus].
    Bühren J; Kook D; Kohnen T
    Ophthalmologe; 2012 Jan; 109(1):37-44. PubMed ID: 22274296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of subclinical keratoconus by using corneal anterior and posterior surface aberrations and thickness spatial profiles.
    Bühren J; Kook D; Yoon G; Kohnen T
    Invest Ophthalmol Vis Sci; 2010 Jul; 51(7):3424-32. PubMed ID: 20164452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining subclinical keratoconus using corneal first-surface higher-order aberrations.
    Bühren J; Kühne C; Kohnen T
    Am J Ophthalmol; 2007 Mar; 143(3):381-9. PubMed ID: 17317387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pentacam Scheimpflug tomography findings in topographically normal patients and subclinical keratoconus cases.
    Ruiseñor Vázquez PR; Galletti JD; Minguez N; Delrivo M; Fuentes Bonthoux F; Pförtner T; Galletti JG
    Am J Ophthalmol; 2014 Jul; 158(1):32-40.e2. PubMed ID: 24709808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New artificial intelligence index based on Scheimpflug corneal tomography to distinguish subclinical keratoconus from healthy corneas.
    Almeida GC; Guido RC; Balarin Silva HM; Brandão CC; de Mattos LC; Lopes BT; Machado AP; Ambrósio R
    J Cataract Refract Surg; 2022 Oct; 48(10):1168-1174. PubMed ID: 35333829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of metrics for the detection of subclinical keratoconus in a new patient collective.
    Bühren J; Schäffeler T; Kohnen T
    J Cataract Refract Surg; 2014 Feb; 40(2):259-68. PubMed ID: 24360499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating the Performance of Various Machine Learning Algorithms to Detect Subclinical Keratoconus.
    Cao K; Verspoor K; Sahebjada S; Baird PN
    Transl Vis Sci Technol; 2020 Apr; 9(2):24. PubMed ID: 32818085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of Scheimpflug-Based Corneal Tomography and Biomechanical Assessments for Enhancing Ectasia Detection.
    Ambrósio R; Lopes BT; Faria-Correia F; Salomão MQ; Bühren J; Roberts CJ; Elsheikh A; Vinciguerra R; Vinciguerra P
    J Refract Surg; 2017 Jul; 33(7):434-443. PubMed ID: 28681902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Universal architecture of corneal segmental tomography biomarkers for artificial intelligence-driven diagnosis of early keratoconus.
    Kundu G; Shetty R; Khamar P; Mullick R; Gupta S; Nuijts R; Sinha Roy A
    Br J Ophthalmol; 2023 May; 107(5):635-643. PubMed ID: 34916211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative evaluation of Scheimpflug tomography parameters between thin non-keratoconic, subclinical keratoconic, and mild keratoconic corneas.
    Huseynli S; Salgado-Borges J; Alio JL
    Eur J Ophthalmol; 2018 Sep; 28(5):521-534. PubMed ID: 29566542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimized Artificial Intelligence for Enhanced Ectasia Detection Using Scheimpflug-Based Corneal Tomography and Biomechanical Data.
    Ambrósio R; Machado AP; Leão E; Lyra JMG; Salomão MQ; Esporcatte LGP; da Fonseca Filho JBR; Ferreira-Meneses E; Sena NB; Haddad JS; Costa Neto A; de Almeida GC; Roberts CJ; Elsheikh A; Vinciguerra R; Vinciguerra P; Bühren J; Kohnen T; Kezirian GM; Hafezi F; Hafezi NL; Torres-Netto EA; Lu N; Kang DSY; Kermani O; Koh S; Padmanabhan P; Taneri S; Trattler W; Gualdi L; Salgado-Borges J; Faria-Correia F; Flockerzi E; Seitz B; Jhanji V; Chan TCY; Baptista PM; Reinstein DZ; Archer TJ; Rocha KM; Waring GO; Krueger RR; Dupps WJ; Khoramnia R; Hashemi H; Asgari S; Momeni-Moghaddam H; Zarei-Ghanavati S; Shetty R; Khamar P; Belin MW; Lopes BT
    Am J Ophthalmol; 2023 Jul; 251():126-142. PubMed ID: 36549584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning with a reduced dimensionality representation of comprehensive Pentacam tomography parameters to identify subclinical keratoconus.
    Cao K; Verspoor K; Chan E; Daniell M; Sahebjada S; Baird PN
    Comput Biol Med; 2021 Nov; 138():104884. PubMed ID: 34607273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.