BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35544034)

  • 1. Fluid shear stress in a logarithmic microfluidic device enhances cancer cell stemness marker expression.
    Dash SK; Patra B; Sharma V; Das SK; Verma RS
    Lab Chip; 2022 May; 22(11):2200-2211. PubMed ID: 35544034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long range microfluidic shear device for cellular mechanotransduction studies.
    Dash SK; Verma RS; Das SK
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3209-12. PubMed ID: 26736975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Online Analysis of Drug Toxicity to Cells with Shear Stress on an Integrated Microfluidic Chip.
    Feng S; Mao S; Zhang Q; Li W; Lin JM
    ACS Sens; 2019 Feb; 4(2):521-527. PubMed ID: 30688066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluid shear stress induces epithelial-mesenchymal transition (EMT) in Hep-2 cells.
    Liu S; Zhou F; Shen Y; Zhang Y; Yin H; Zeng Y; Liu J; Yan Z; Liu X
    Oncotarget; 2016 May; 7(22):32876-92. PubMed ID: 27096955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow stimulates drug transport in a human kidney proximal tubule-on-a-chip independent of primary cilia.
    Vriend J; Peters JGP; Nieskens TTG; Škovroňová R; Blaimschein N; Schmidts M; Roepman R; Schirris TJJ; Russel FGM; Masereeuw R; Wilmer MJ
    Biochim Biophys Acta Gen Subj; 2020 Jan; 1864(1):129433. PubMed ID: 31520681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A systematic investigation of the effect of the fluid shear stress on Caco-2 cells towards the optimization of epithelial organ-on-chip models.
    Delon LC; Guo Z; Oszmiana A; Chien CC; Gibson R; Prestidge C; Thierry B
    Biomaterials; 2019 Dec; 225():119521. PubMed ID: 31600674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microfluidic-based multi-shear device for investigating the effects of low fluid-induced stresses on osteoblasts.
    Yu W; Qu H; Hu G; Zhang Q; Song K; Guan H; Liu T; Qin J
    PLoS One; 2014; 9(2):e89966. PubMed ID: 24587156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A modular microfluidic platform to study how fluid shear stress alters estrogen receptor phenotype in ER
    Quesada BAO; Cuccia J; Coates R; Nassar B; Littlefield E; Martin EC; Melvin AT
    Res Sq; 2023 Oct; ():. PubMed ID: 37886527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluid shear stress improves morphology, cytoskeleton architecture, viability, and regulates cytokine expression in a time-dependent manner in MLO-Y4 cells.
    Yan Z; Wang P; Wu J; Feng X; Cai J; Zhai M; Li J; Liu X; Jiang M; Luo E; Jing D
    Cell Biol Int; 2018 Sep; 42(10):1410-1422. PubMed ID: 30022568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cell-based sensor of fluid shear stress for microfluidics.
    Varma S; Voldman J
    Lab Chip; 2015 Mar; 15(6):1563-73. PubMed ID: 25648195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hele Shaw microfluidic device: A new tool for systematic investigation into the effect of the fluid shear stress for organs-on-chips.
    Delon LC; Guo Z; Kashani MN; Yang CT; Prestidge C; Thierry B
    MethodsX; 2020; 7():100980. PubMed ID: 32685381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A modular microfluidic platform to study how fluid shear stress alters estrogen receptor phenotype in ER
    Ortega Quesada BA; Cuccia J; Coates R; Nassar B; Littlefield E; Martin EC; Melvin AT
    Microsyst Nanoeng; 2024; 10():25. PubMed ID: 38370397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Responses of Cellular Adhesion Strength and Stiffness to Fluid Shear Stress during Tumor Cell Rolling Motion.
    Li W; Mao S; Khan M; Zhang Q; Huang Q; Feng S; Lin JM
    ACS Sens; 2019 Jun; 4(6):1710-1715. PubMed ID: 31094503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three dimensional modeling of biologically relevant fluid shear stress in human renal tubule cells mimics in vivo transcriptional profiles.
    Ross EJ; Gordon ER; Sothers H; Darji R; Baron O; Haithcock D; Prabhakarpandian B; Pant K; Myers RM; Cooper SJ; Cox NJ
    Sci Rep; 2021 Jul; 11(1):14053. PubMed ID: 34234242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biophysical analysis of fluid shear stress induced cellular deformation in a microfluidic device.
    Landwehr GM; Kristof AJ; Rahman SM; Pettigrew JH; Coates R; Balhoff JB; Triantafillu UL; Kim Y; Melvin AT
    Biomicrofluidics; 2018 Sep; 12(5):054109. PubMed ID: 30364235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gradient fluid shear stress regulates migration of osteoclast precursors.
    Gao Y; Li T; Sun Q; Huo B
    Cell Adh Migr; 2019 Dec; 13(1):183-191. PubMed ID: 31131719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluid shear stress-induced mechanotransduction in myoblasts: Does it depend on the glycocalyx?
    Haroon M; Bloks NGC; Deldicque L; Koppo K; Seddiqi H; Bakker AD; Klein-Nulend J; Jaspers RT
    Exp Cell Res; 2022 Aug; 417(1):113204. PubMed ID: 35588795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circulating prostate cancer cells have differential resistance to fluid shear stress-induced cell death.
    Hope JM; Bersi MR; Dombroski JA; Clinch AB; Pereles RS; Merryman WD; King MR
    J Cell Sci; 2021 Feb; 134(4):. PubMed ID: 33526716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluid shear stress generates a unique signaling response by activating multiple TGFβ family type I receptors in osteocytes.
    Monteiro DA; Dole NS; Campos JL; Kaya S; Schurman CA; Belair CD; Alliston T
    FASEB J; 2021 Mar; 35(3):e21263. PubMed ID: 33570811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel in vitro microfluidic platform for osteocyte mechanotransduction studies.
    Xu L; Song X; Carroll G; You L
    Integr Biol (Camb); 2020 Dec; 12(12):303-310. PubMed ID: 33420790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.