BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35544346)

  • 1. Uncovering the Key Features of Dysprosium Flows and Stocks in China.
    Xiao S; Geng Y; Pan H; Gao Z; Yao T
    Environ Sci Technol; 2022 Jun; 56(12):8682-8690. PubMed ID: 35544346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unlocking Dysprosium Constraints for China's 1.5 °C Climate Target.
    Dai T; Liu YF; Wang P; Qiu Y; Mancheri N; Chen W; Liu JX; Chen WQ; Wang H; Wang AJ
    Environ Sci Technol; 2023 Sep; 57(38):14113-14126. PubMed ID: 37709662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating rare earth element availability: a case with revolutionary demand from clean technologies.
    Alonso E; Sherman AM; Wallington TJ; Everson MP; Field FR; Roth R; Kirchain RE
    Environ Sci Technol; 2012 Mar; 46(6):3406-14. PubMed ID: 22304002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Material Flow Analysis of Dysprosium in the United States.
    Chen C; Li N; Qi J; Wei J; Chen WQ
    Environ Sci Technol; 2023 Nov; 57(45):17256-17265. PubMed ID: 37921462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recycling as a strategy against rare earth element criticality: a systemic evaluation of the potential yield of NdFeB magnet recycling.
    Rademaker JH; Kleijn R; Yang Y
    Environ Sci Technol; 2013 Sep; 47(18):10129-36. PubMed ID: 23909476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordination Chemistry-Driven Approaches to Rare Earth Element Separations.
    Higgins RF; Ruoff KP; Kumar A; Schelter EJ
    Acc Chem Res; 2022 Sep; 55(18):2616-2627. PubMed ID: 36041177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Material flow analysis of NdFeB magnets for Denmark: a comprehensive waste flow sampling and analysis approach.
    Habib K; Schibye PK; Vestbø AP; Dall O; Wenzel H
    Environ Sci Technol; 2014 Oct; 48(20):12229-37. PubMed ID: 25238428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating rare-earth constraints on wind power development under China's carbon-neutral target.
    Hu Z; Yu B; Liu LC; Wei YM
    Sci Total Environ; 2024 Feb; 912():168634. PubMed ID: 37981165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prospective analysis of the flows of certain rare earths in Europe at the 2020 horizon.
    Rollat A; Guyonnet D; Planchon M; Tuduri J
    Waste Manag; 2016 Mar; 49():427-436. PubMed ID: 26818182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dysprosium electrodeposition from a hexaalkylguanidinium-based ionic liquid.
    Berger CA; Arkhipova M; Maas G; Jacob T
    Nanoscale; 2016 Aug; 8(29):13997-4003. PubMed ID: 27121463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracking Three Decades of Global Neodymium Stocks and Flows with a Trade-Linked Multiregional Material Flow Analysis.
    Liu Q; Sun K; Ouyang X; Sen B; Liu L; Dai T; Liu G
    Environ Sci Technol; 2022 Aug; 56(16):11807-11817. PubMed ID: 35920659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global in-use stocks of the rare Earth elements: a first estimate.
    Du X; Graedel TE
    Environ Sci Technol; 2011 May; 45(9):4096-101. PubMed ID: 21438595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into the evolution of cobalt use and implications through dynamic analysis of cobalt flows and stocks and the recycling potential of cobalt from urban mines in China during 2000-2021.
    Qiao D; Dai T; Ma Y; Gao T
    Waste Manag; 2023 May; 163():122-133. PubMed ID: 37011560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tracking and quantifying the cobalt flows in mainland China during 1994-2016: Insights into use, trade and prospective demand.
    Chen Z; Zhang L; Xu Z
    Sci Total Environ; 2019 Jul; 672():752-762. PubMed ID: 30974365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustainable recovery of neodymium and dysprosium from waters through seaweeds: Influence of operational parameters.
    Viana T; Henriques B; Ferreira N; Lopes C; Tavares D; Fabre E; Carvalho L; Pinheiro-Torres J; Pereira E
    Chemosphere; 2021 Oct; 280():130600. PubMed ID: 33940453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncovering the global life cycles of the rare earth elements.
    Du X; Graedel TE
    Sci Rep; 2011; 1():145. PubMed ID: 22355662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using chemometric models to predict the biosorption of low levels of dysprosium by Euglena gracilis.
    Lewis A; Guéguen C
    Environ Sci Pollut Res Int; 2022 Aug; 29(39):58936-58949. PubMed ID: 35377126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The anthropogenic cycles of palladium in China during 2001-2020.
    Gu W; Geng Y; Xiao S; Gao Z; Wei W
    Sci Total Environ; 2023 Dec; 904():167248. PubMed ID: 37739081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scarcity of rare earth elements.
    de Boer MA; Lammertsma K
    ChemSusChem; 2013 Nov; 6(11):2045-55. PubMed ID: 24009098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stocks, Flows, and Distribution of Critical Metals in Embedded Electronics in Passenger Vehicles.
    Restrepo E; Løvik AN; Wäger P; Widmer R; Lonka R; Müller DB
    Environ Sci Technol; 2017 Feb; 51(3):1129-1139. PubMed ID: 28099815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.