These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 35544509)
1. A Wearable Gait Analysis and Recognition Method for Parkinson's Disease Based on Error State Kalman Filter. Liu R; Wang Z; Qiu S; Zhao H; Wang C; Shi X; Lin F IEEE J Biomed Health Inform; 2022 Aug; 26(8):4165-4175. PubMed ID: 35544509 [TBL] [Abstract][Full Text] [Related]
2. An Automatic Gait Analysis Pipeline for Wearable Sensors: A Pilot Study in Parkinson's Disease. Peraza LR; Kinnunen KM; McNaney R; Craddock IJ; Whone AL; Morgan C; Joules R; Wolz R Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960379 [TBL] [Abstract][Full Text] [Related]
3. Wearable multisource quantitative gait analysis of Parkinson's diseases. Xie J; Zhao H; Cao J; Qu Q; Cao H; Liao WH; Lei Y; Guo L Comput Biol Med; 2023 Sep; 164():107270. PubMed ID: 37478714 [TBL] [Abstract][Full Text] [Related]
4. A Wearable Sensor System to Measure Step-Based Gait Parameters for Parkinson's Disease Rehabilitation. Muthukrishnan N; Abbas JJ; Krishnamurthi N Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33182658 [TBL] [Abstract][Full Text] [Related]
5. Automatic Assessments of Parkinsonian Gait with Wearable Sensors for Human Assistive Systems. Han Y; Liu X; Zhang N; Zhang X; Zhang B; Wang S; Liu T; Yi J Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850705 [TBL] [Abstract][Full Text] [Related]
6. Deep Learning Techniques for Improving Digital Gait Segmentation. Gadaleta M; Cisotto G; Rossi M; Ur Rehman RZ; Rochester L; Del Din S Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1834-1837. PubMed ID: 31946254 [TBL] [Abstract][Full Text] [Related]
7. Reliability of using foot-worn devices to measure gait parameters in people with Parkinson's disease. Lee YY; Li MH; Luh JJ; Tai CH NeuroRehabilitation; 2021; 49(1):57-64. PubMed ID: 34180427 [TBL] [Abstract][Full Text] [Related]
8. A novel single-sensor-based method for the detection of gait-cycle breakdown and freezing of gait in Parkinson's disease. Chomiak T; Xian W; Pei Z; Hu B J Neural Transm (Vienna); 2019 Aug; 126(8):1029-1036. PubMed ID: 31154512 [TBL] [Abstract][Full Text] [Related]
9. The Role of Deep Learning and Gait Analysis in Parkinson's Disease: A Systematic Review. Franco A; Russo M; Amboni M; Ponsiglione AM; Di Filippo F; Romano M; Amato F; Ricciardi C Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338702 [TBL] [Abstract][Full Text] [Related]
10. Machine learning-based motor assessment of Parkinson's disease using postural sway, gait and lifestyle features on crowdsourced smartphone data. Abujrida H; Agu E; Pahlavan K Biomed Phys Eng Express; 2020 Mar; 6(3):035005. PubMed ID: 33438650 [TBL] [Abstract][Full Text] [Related]
11. Predicting the Progression of Parkinson's Disease MDS-UPDRS-III Motor Severity Score from Gait Data using Deep Learning. Zia Ur Rehman R; Rochester L; Yarnall AJ; Del Din S Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():249-252. PubMed ID: 34891283 [TBL] [Abstract][Full Text] [Related]
12. Prediction of Freezing of Gait in Parkinson's Disease Using Wearables and Machine Learning. Borzì L; Mazzetta I; Zampogna A; Suppa A; Olmo G; Irrera F Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477323 [TBL] [Abstract][Full Text] [Related]
13. Measurement of Step Angle for Quantifying the Gait Impairment of Parkinson's Disease by Wearable Sensors: Controlled Study. Wang J; Gong D; Luo H; Zhang W; Zhang L; Zhang H; Zhou J; Wang S JMIR Mhealth Uhealth; 2020 Mar; 8(3):e16650. PubMed ID: 32196458 [TBL] [Abstract][Full Text] [Related]
15. Proof of Concept in Artificial-Intelligence-Based Wearable Gait Monitoring for Parkinson's Disease Management Optimization. Ileșan RR; Cordoș CG; Mihăilă LI; Fleșar R; Popescu AS; Perju-Dumbravă L; Faragó P Biosensors (Basel); 2022 Mar; 12(4):. PubMed ID: 35448249 [TBL] [Abstract][Full Text] [Related]
16. Validation of IMU-based gait event detection during curved walking and turning in older adults and Parkinson's Disease patients. Romijnders R; Warmerdam E; Hansen C; Welzel J; Schmidt G; Maetzler W J Neuroeng Rehabil; 2021 Feb; 18(1):28. PubMed ID: 33549105 [TBL] [Abstract][Full Text] [Related]
17. A Validation Study of Freezing of Gait (FoG) Detection and Machine-Learning-Based FoG Prediction Using Estimated Gait Characteristics with a Wearable Accelerometer. Aich S; Pradhan PM; Park J; Sethi N; Vathsa VSS; Kim HC Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30274340 [TBL] [Abstract][Full Text] [Related]
18. Discriminating progressive supranuclear palsy from Parkinson's disease using wearable technology and machine learning. De Vos M; Prince J; Buchanan T; FitzGerald JJ; Antoniades CA Gait Posture; 2020 Mar; 77():257-263. PubMed ID: 32078894 [TBL] [Abstract][Full Text] [Related]
19. Parkinson's Disease Wearable Gait Analysis: Kinematic and Dynamic Markers for Diagnosis. di Biase L; Raiano L; Caminiti ML; Pecoraro PM; Di Lazzaro V Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433372 [No Abstract] [Full Text] [Related]
20. Technology-Based Objective Measures Detect Subclinical Axial Signs in Untreated, de novo Parkinson's Disease. Di Lazzaro G; Ricci M; Al-Wardat M; Schirinzi T; Scalise S; Giannini F; Mercuri NB; Saggio G; Pisani A J Parkinsons Dis; 2020; 10(1):113-122. PubMed ID: 31594252 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]