These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 35544700)

  • 1. Grotthuss Molecular Dynamics Simulations for Modeling Proton Hopping in Electrosprayed Water Droplets.
    Konermann L; Kim S
    J Chem Theory Comput; 2022 Jun; 18(6):3781-3794. PubMed ID: 35544700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Dynamics Simulations of Native Protein Charging via Proton Transfer during Electrospray Ionization with Grotthuss Diffuse H
    Cordes MS; Gallagher ES
    Anal Chem; 2024 Mar; 96(10):4146-4153. PubMed ID: 38427846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations of electrosprayed water nanodroplets: internal potential gradients, location of excess charge centers, and "hopping" protons.
    Ahadi E; Konermann L
    J Phys Chem B; 2009 May; 113(20):7071-80. PubMed ID: 19388688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revealing the Anticorrelation Behavior Mechanism between the Grotthuss and Vehicular Diffusions for Proton Transport in Concentrated Acid Solutions.
    Mabuchi T
    J Phys Chem B; 2022 May; 126(17):3319-3326. PubMed ID: 35468285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The curious case of the hydrated proton.
    Knight C; Voth GA
    Acc Chem Res; 2012 Jan; 45(1):101-9. PubMed ID: 21859071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton transfer through the water gossamer.
    Hassanali A; Giberti F; Cuny J; Kühne TD; Parrinello M
    Proc Natl Acad Sci U S A; 2013 Aug; 110(34):13723-8. PubMed ID: 23868853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrated Excess Protons Can Create Their Own Water Wires.
    Peng Y; Swanson JM; Kang SG; Zhou R; Voth GA
    J Phys Chem B; 2015 Jul; 119(29):9212-8. PubMed ID: 25369445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab initio molecular dynamics simulation of proton hopping in a model polymer membrane.
    Devanathan R; Idupulapati N; Baer MD; Mundy CJ; Dupuis M
    J Phys Chem B; 2013 Dec; 117(51):16522-9. PubMed ID: 24320080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pathway for serial proton supply to the active site of nitrogenase: enhanced density functional modeling of the Grotthuss mechanism.
    Dance I
    Dalton Trans; 2015 Nov; 44(41):18167-86. PubMed ID: 26419970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Correlated Dynamics in the Grotthuss Mechanism of Proton Diffusion.
    Fischer SA; Gunlycke D
    J Phys Chem B; 2019 Jul; 123(26):5536-5544. PubMed ID: 31180658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate diffusion coefficients of the excess proton and hydroxide in water via extensive ab initio simulations with different schemes.
    Muñoz-Santiburcio D
    J Chem Phys; 2022 Jul; 157(2):024504. PubMed ID: 35840376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excess proton solvation and delocalization in a hydrophilic pocket of the proton conducting polymer membrane nafion.
    Petersen MK; Wang F; Blake NP; Metiu H; Voth GA
    J Phys Chem B; 2005 Mar; 109(9):3727-30. PubMed ID: 16851417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Dynamics Simulation of Proton Transport in Polymer Electrolyte Membrane.
    Mabuchi T; Tokumasu T
    J Nanosci Nanotechnol; 2015 Apr; 15(4):2958-63. PubMed ID: 26353520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the solvation and transport of the hydrated proton in the perfluorosulfonic acid membrane nafion.
    Petersen MK; Voth GA
    J Phys Chem B; 2006 Sep; 110(37):18594-600. PubMed ID: 16970488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracking Aqueous Proton Transfer by Two-Dimensional Infrared Spectroscopy and ab Initio Molecular Dynamics Simulations.
    Yuan R; Napoli JA; Yan C; Marsalek O; Markland TE; Fayer MD
    ACS Cent Sci; 2019 Jul; 5(7):1269-1277. PubMed ID: 31403075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chain Ejection Model for Electrospray Ionization of Unfolded Proteins: Evidence from Atomistic Simulations and Ion Mobility Spectrometry.
    Metwally H; Duez Q; Konermann L
    Anal Chem; 2018 Aug; 90(16):10069-10077. PubMed ID: 30040388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of proton recombination with NO3- anion in water clusters.
    Miller Y; Gerber RB
    Phys Chem Chem Phys; 2008 Feb; 10(8):1091-3. PubMed ID: 18270608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collision-Induced Dissociation of Electrosprayed Protein Complexes: An All-Atom Molecular Dynamics Model with Mobile Protons.
    Popa V; Trecroce DA; McAllister RG; Konermann L
    J Phys Chem B; 2016 Jun; 120(23):5114-24. PubMed ID: 27218677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlated dynamics in aqueous proton diffusion.
    Fischer SA; Dunlap BI; Gunlycke D
    Chem Sci; 2018 Sep; 9(35):7126-7132. PubMed ID: 30310634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of classical and ab initio simulations of hydronium and aqueous proton transfer.
    Maurer M; Lazaridis T
    J Chem Phys; 2023 Oct; 159(13):. PubMed ID: 37795787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.