These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Cochlear nonlinear phenomena in two-tone responses. Kim DO; Siegel JH; Molnar CE Scand Audiol Suppl; 1979; (9):63-81. PubMed ID: 294691 [No Abstract] [Full Text] [Related]
5. Studies of the distribution of cochlear potentials along the basilar membrane. Kohllöffel LU Acta Otolaryngol Suppl; 1971; 288():1-66. PubMed ID: 4341369 [No Abstract] [Full Text] [Related]
6. [Cochlear microphonic responses to mechanical impulses applied directly to the basilar membrane]. Legouix JP C R Seances Soc Biol Fil; 1966; 160(10):1782-4. PubMed ID: 4227976 [No Abstract] [Full Text] [Related]
7. [Origin of N1 wave of the cochlear nerve action potential recorded at the bony wall of the cochlea]. Matsushima J Hokkaido Igaku Zasshi; 1982 Sep; 57(5):602-13. PubMed ID: 7152466 [TBL] [Abstract][Full Text] [Related]
8. The hemicochlea preparation of the guinea pig and other mammalian cochleae. Teudt IU; Richter CP J Neurosci Methods; 2007 May; 162(1-2):187-97. PubMed ID: 17327136 [TBL] [Abstract][Full Text] [Related]
9. [Isolation of cochlear inner hair cells from guinea pigs by trypsin]. Tang Y; Yuan S; Liu S Sichuan Da Xue Xue Bao Yi Xue Ban; 2003 Jul; 34(3):582-3. PubMed ID: 12910729 [TBL] [Abstract][Full Text] [Related]
10. Wever and Lawrence revisited: effects of nulling basilar membrane movement on concomitant whole-nerve action potential. Offut G J Aud Res; 1986 Jan; 26(1):43-54. PubMed ID: 3610990 [TBL] [Abstract][Full Text] [Related]
11. Reverse transduction measured in the isolated cochlea by laser Michelson interferometry. Mammano F; Ashmore JF Nature; 1993 Oct; 365(6449):838-41. PubMed ID: 8413667 [TBL] [Abstract][Full Text] [Related]
12. [Examination of the sensitivity of cochlear microphonics (CM) as the index of the activity of the hair cell]. Shida T; Sugano T; Maruyama R; Takegami T; Imai J Nihon Jibiinkoka Gakkai Kaiho; 1972 Oct; 75(10):1022-3. PubMed ID: 4676068 [No Abstract] [Full Text] [Related]
13. Dual origin of the cochlear microphonics: inner and outer hair cells. Karlan MS; Tonndorf J; Khanna SM Ann Otol Rhinol Laryngol; 1972 Oct; 81(5):696-704. PubMed ID: 4651113 [No Abstract] [Full Text] [Related]
14. Auditory thresholds and cochlear microphonics from the same guinea pigs. Walloch RA; Taylor-Spikes M J Aud Res; 1977 Jul; 17(3):145-54. PubMed ID: 617343 [No Abstract] [Full Text] [Related]
15. [Effects of strong whole body vibration on cochlear microphonics of the internal ear]. Yamaura K Hokkaido Igaku Zasshi; 1975 Jan; 50(1):70-2. PubMed ID: 1171059 [No Abstract] [Full Text] [Related]
16. Mechanism of production of cochlear microphonics. Honrubia V; Ward PH J Acoust Soc Am; 1970 Feb; 47(2):498-503. PubMed ID: 5439648 [No Abstract] [Full Text] [Related]
17. [Amplitude and phase of cochlear microphonics as a function of the changes of pressure inside the tympanic bulla in the gerbil and guinea pig]. AUBRY M; PIALOUX P; BURGEAT M Ann Otolaryngol; 1962 Jun; 79():387-94. PubMed ID: 13863191 [No Abstract] [Full Text] [Related]
18. Problems of cochlear microphonic recording in man. Hoke M Rev Laryngol Otol Rhinol (Bord); 1976 Nov; 97 Suppl():473-6. PubMed ID: 1019435 [No Abstract] [Full Text] [Related]
19. [Relationship between the pseudothreshold and maximum output of cochlear microphonics]. Shida S; Kanno S; Imai J; Morita S; Fujii M Nihon Jibiinkoka Gakkai Kaiho; 1971 Feb; 74(2):332-3. PubMed ID: 5106606 [No Abstract] [Full Text] [Related]
20. On the Tonotopy of the Low-Frequency Region of the Cochlea. Recio-Spinoso A; Dong W; Oghalai JS J Neurosci; 2023 Jul; 43(28):5172-5179. PubMed ID: 37225436 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]