BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35545211)

  • 1. Valorisation of industrial hemp (Cannabis sativa L.) biomass residues through acidogenic fermentation and co-fermentation for volatile fatty acids production.
    Moscariello C; Matassa S; Pirozzi F; Esposito G; Papirio S
    Bioresour Technol; 2022 Jul; 355():127289. PubMed ID: 35545211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acidogenic fermentation of potato peel waste for volatile fatty acids production: Effect of initial organic load.
    Lu Y; Chen R; Huang L; Wang X; Chou S; Zhu J
    J Biotechnol; 2023 Sep; 374():114-121. PubMed ID: 37579845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of polyhydroxyalkanoates (PHAs) by
    Vu DH; Wainaina S; Taherzadeh MJ; Åkesson D; Ferreira JA
    Bioengineered; 2021 Dec; 12(1):2480-2498. PubMed ID: 34115556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Valorization of agro-industrial wastes to produce volatile fatty acids: combined effect of substrate/inoculum ratio and initial alkalinity.
    Iglesias-Iglesias R; Fernandez-Feal MMDC; Kennes C; Veiga MC
    Environ Technol; 2021 Nov; 42(25):3889-3899. PubMed ID: 32167848
    [No Abstract]   [Full Text] [Related]  

  • 5. Review and perspectives of enhanced volatile fatty acids production from acidogenic fermentation of lignocellulosic biomass wastes.
    Sun J; Zhang L; Loh KC
    Bioresour Bioprocess; 2021 Aug; 8(1):68. PubMed ID: 38650255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic fermentation of organic solid wastes: volatile fatty acid production and separation.
    Yesil H; Tugtas AE; Bayrakdar A; Calli B
    Water Sci Technol; 2014; 69(10):2132-8. PubMed ID: 24845331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acidogenic fermentation of Scenedesmus sp.-AMDD: Comparison of volatile fatty acids yields between mesophilic and thermophilic conditions.
    Gruhn M; Frigon JC; Guiot SR
    Bioresour Technol; 2016 Jan; 200():624-30. PubMed ID: 26551650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Next-generation -omics approaches to drive carboxylate production by acidogenic fermentation of food waste: a review.
    Kumar R; Kumar R; Brar SK; Kaur G
    Bioengineered; 2022; 13(7-12):14987-15002. PubMed ID: 37105768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acidogenic fermentation of food waste for production of volatile fatty acids: Bacterial community analysis and semi-continuous operation.
    Zhang L; Loh KC; Dai Y; Tong YW
    Waste Manag; 2020 May; 109():75-84. PubMed ID: 32388405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volatile fatty acids produced by co-fermentation of waste activated sludge and henna plant biomass.
    Huang J; Zhou R; Chen J; Han W; Chen Y; Wen Y; Tang J
    Bioresour Technol; 2016 Jul; 211():80-6. PubMed ID: 27003793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of methanogens in acetic acid production under different salinity conditions.
    Xiao K; Guo C; Maspolim Y; Zhou Y; Ng WJ
    Chemosphere; 2016 Oct; 161():53-60. PubMed ID: 27421101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Organic Loading Rate in Volatile Fatty Acids Production and Population Dynamics Using Microalgae Biomass as Substrate.
    Magdalena JA; Greses S; González-Fernández C
    Sci Rep; 2019 Dec; 9(1):18374. PubMed ID: 31804573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volatile fatty acid production from mesophilic acidogenic fermentation of organic fraction of municipal solid waste and food waste under acidic and alkaline pH.
    Cheah YK; Vidal-Antich C; Dosta J; Mata-Álvarez J
    Environ Sci Pollut Res Int; 2019 Dec; 26(35):35509-35522. PubMed ID: 31111388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Agroindustrial waste as a resource for volatile fatty acids production via anaerobic fermentation.
    Greses S; Tomás-Pejó E; Gónzalez-Fernández C
    Bioresour Technol; 2020 Feb; 297():122486. PubMed ID: 31796382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a new type of mead fermented with Cannabis sativa L. (hemp).
    Romano R; Aiello A; De Luca L; Sica R; Caprio E; Pizzolongo F; Blaiotta G
    J Food Sci; 2021 Mar; 86(3):874-880. PubMed ID: 33559225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Valorization of sewage sludge in co-digestion with cheese whey to produce volatile fatty acids.
    Iglesias-Iglesias R; Kennes C; Veiga MC
    Waste Manag; 2020 Dec; 118():541-551. PubMed ID: 32980733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Waste-derived volatile fatty acids as carbon source for added-value fermentation approaches.
    Chalima A; de Castro LF; Burgstaller L; Sampaio P; Carolas AL; Gildemyn S; Velghe F; Ferreira BS; Pais C; Neureiter M; Dietrich T; Topakas E
    FEMS Microbiol Lett; 2021 May; 368(9):. PubMed ID: 34036336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fermentation of wet-exploded corn stover for the production of volatile fatty acids.
    Murali N; Fernandez S; Ahring BK
    Bioresour Technol; 2017 Mar; 227():197-204. PubMed ID: 28038397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery of mixed volatile fatty acids from anaerobically fermented organic wastes by vapor permeation membrane contactors.
    Aydin S; Yesil H; Tugtas AE
    Bioresour Technol; 2018 Feb; 250():548-555. PubMed ID: 29197778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volatile fatty acid platform - a cornerstone for the circular bioeconomy.
    Velghe F; De Wilde F; Snellinx S; Farahbakhsh S; Belderbos E; Peral C; Wiedemann A; Hiessl S; Michels J; Pierrard MA; Dietrich T
    FEMS Microbiol Lett; 2021 May; 368(9):. PubMed ID: 34036338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.