These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35545424)

  • 21. Recovery of orthographic processing after stroke: A longitudinal fMRI study.
    Purcell J; Sebastian R; Leigh R; Jarso S; Davis C; Posner J; Wright A; Hillis AE
    Cortex; 2017 Jul; 92():103-118. PubMed ID: 28463704
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of word form on brain processing of written Chinese.
    Fu S; Chen Y; Smith S; Iversen S; Matthews PM
    Neuroimage; 2002 Nov; 17(3):1538-48. PubMed ID: 12414292
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural strategies for reading Japanese and Chinese sentences: a cross-linguistic fMRI study of character-decoding and morphosyntax.
    Huang K; Itoh K; Kwee IL; Nakada T
    Neuropsychologia; 2012 Sep; 50(11):2598-604. PubMed ID: 22820634
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Altered visual character and object recognition in Japanese-speaking adolescents with developmental dyslexia.
    Higuchi H; Iwaki S; Uno A
    Neurosci Lett; 2020 Apr; 723():134841. PubMed ID: 32081567
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of the ventral and dorsal pathways in reading Chinese characters and English words.
    Sun Y; Yang Y; Desroches AS; Liu L; Peng D
    Brain Lang; 2011 Nov; 119(2):80-8. PubMed ID: 21546073
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The contribution of phonological information to visual word recognition: Evidence from Chinese phonetic radicals.
    Liu X; Vermeylen L; Wisniewski D; Brysbaert M
    Cortex; 2020 Dec; 133():48-64. PubMed ID: 33099075
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automatic semantic influence on early visual word recognition in the ventral occipito-temporal cortex.
    Wang J; Deng Y; Booth JR
    Neuropsychologia; 2019 Oct; 133():107188. PubMed ID: 31499046
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Early lexical processing of Chinese one-character words and Mongolian words: A comparative study using event-related potentials.
    Zhang K; Gu F; Yu H
    Front Psychol; 2022; 13():1061990. PubMed ID: 36733864
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Orthographic transparency modulates the functional asymmetry in the fusiform cortex: an artificial language training study.
    Mei L; Xue G; Lu ZL; He Q; Zhang M; Xue F; Chen C; Dong Q
    Brain Lang; 2013 May; 125(2):165-72. PubMed ID: 22434043
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hemispheric processing of lexical information in Chinese character recognition and its relationship to reading performance.
    Zhou W; Gao Y; Chang Y; Su M
    J Gen Psychol; 2019; 146(1):34-49. PubMed ID: 30632925
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibitory stroke neighbour priming in character recognition and reading in Chinese.
    Wang J; Tian J; Han W; Liversedge SP; Paterson KB
    Q J Exp Psychol (Hove); 2014; 67(11):2149-71. PubMed ID: 24773283
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrophysiological evidence of sublexical phonological access in character processing by L2 Chinese learners of L1 alphabetic scripts.
    Yum YN; Law SP; Mo KN; Lau D; Su IF; Shum MS
    Cogn Affect Behav Neurosci; 2016 Apr; 16(2):339-52. PubMed ID: 26620688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Representations of Chinese Characters: Evidence from Sublexical Components.
    Liu X; Wisniewski D; Vermeylen L; Palenciano AF; Liu W; Brysbaert M
    J Neurosci; 2022 Jan; 42(1):135-144. PubMed ID: 34782438
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Orthographic and phonological processing of Chinese characters: an fMRI study.
    Kuo WJ; Yeh TC; Lee JR; Chen LF; Lee PL; Chen SS; Ho LT; Hung DL; Tzeng OJ; Hsieh JC
    Neuroimage; 2004 Apr; 21(4):1721-31. PubMed ID: 15050593
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of brain mechanisms underlying the processing of Chinese characters and pseudo-characters: an event-related potential study.
    Wang T; Li H; Zhang Q; Tu S; Yu C; Qiu J
    Int J Psychol; 2010 Apr; 45(2):102-10. PubMed ID: 22043890
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Writing affects the brain network of reading in Chinese: a functional magnetic resonance imaging study.
    Cao F; Vu M; Chan DH; Lawrence JM; Harris LN; Guan Q; Xu Y; Perfetti CA
    Hum Brain Mapp; 2013 Jul; 34(7):1670-84. PubMed ID: 22378588
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chinese Character and English Word processing in children's ventral occipitotemporal cortex: fMRI evidence for script invariance.
    Krafnick AJ; Tan LH; Flowers DL; Luetje MM; Napoliello EM; Siok WT; Perfetti C; Eden GF
    Neuroimage; 2016 Jun; 133():302-312. PubMed ID: 27012502
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Frequency effects of Chinese character processing in the brain: an event-related fMRI study.
    Kuo WJ; Yeh TC; Lee CY; Wu Yu; Chou CC; Ho LT; Hung DL; Tzeng OJ; Hsieh JC
    Neuroimage; 2003 Mar; 18(3):720-30. PubMed ID: 12667849
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Visual Word Form Area: evidence from an fMRI study of implicit processing of Chinese characters.
    Liu C; Zhang WT; Tang YY; Mai XQ; Chen HC; Tardif T; Luo YJ
    Neuroimage; 2008 Apr; 40(3):1350-61. PubMed ID: 18272399
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of lexical variables in the visual recognition of Chinese characters: A megastudy analysis.
    Sze WP; Yap MJ; Rickard Liow SJ
    Q J Exp Psychol (Hove); 2015; 68(8):1541-70. PubMed ID: 25622522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.