These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 35545813)

  • 1. Towards Upcycling Biomass-Derived Crosslinked Polymers with Light.
    Singathi R; Raghunathan R; Krishnan R; Kumar Rajendran S; Baburaj S; Sibi MP; Webster DC; Sivaguru J
    Angew Chem Int Ed Engl; 2022 Aug; 61(31):e202203353. PubMed ID: 35545813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upcycling to Sustainably Reuse Plastics.
    Zhao X; Boruah B; Chin KF; Đokić M; Modak JM; Soo HS
    Adv Mater; 2022 Jun; 34(25):e2100843. PubMed ID: 34240472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programmed photodegradation of polymeric/oligomeric materials derived from renewable bioresources.
    Rajendran S; Raghunathan R; Hevus I; Krishnan R; Ugrinov A; Sibi MP; Webster DC; Sivaguru J
    Angew Chem Int Ed Engl; 2015 Jan; 54(4):1159-63. PubMed ID: 25394266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing Biobased Recyclable Polymers for Plastics.
    Hatti-Kaul R; Nilsson LJ; Zhang B; Rehnberg N; Lundmark S
    Trends Biotechnol; 2020 Jan; 38(1):50-67. PubMed ID: 31151764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bio-upcycling of multilayer materials and blends: closing the plastics loop.
    Pellis A; Guebitz GM; Ribitsch D
    Curr Opin Biotechnol; 2023 Jun; 81():102938. PubMed ID: 37058877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic methods for chemical recycling or upcycling of commercial polymers.
    Kosloski-Oh SC; Wood ZA; Manjarrez Y; de Los Rios JP; Fieser ME
    Mater Horiz; 2021 Apr; 8(4):1084-1129. PubMed ID: 34821907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical advances and future opportunities in upcycling commodity polymers.
    Jehanno C; Alty JW; Roosen M; De Meester S; Dove AP; Chen EY; Leibfarth FA; Sardon H
    Nature; 2022 Mar; 603(7903):803-814. PubMed ID: 35354997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrothermal processing of polyethylene-terephthalate and nylon-6 mixture as a plastic waste upcycling treatment: A comprehensive multi-phase analysis.
    Darzi R; Dubowski Y; Posmanik R
    Waste Manag; 2022 Apr; 143():223-231. PubMed ID: 35279014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current Developments in the Chemical Upcycling of Waste Plastics Using Alternative Energy Sources.
    Karimi Estahbanati MR; Kong XY; Eslami A; Soo HS
    ChemSusChem; 2021 Oct; 14(19):4152-4166. PubMed ID: 34048150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible Crosslinking of Commodity Polymers via Photocontrolled Metal-Ligand Coordination for High-Performance and Recyclable Thermoset Plastics.
    Huang YS; Zhou Y; Zeng X; Zhang D; Wu S
    Adv Mater; 2023 Oct; 35(41):e2305517. PubMed ID: 37401043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thiol-Aldehyde Polycondensation for Bio-based Adaptable and Degradable Phenolic Polymers.
    Jin Y; Hu C; Wang J; Ding Y; Shi J; Wang Z; Xu S; Yuan L
    Angew Chem Int Ed Engl; 2023 Sep; 62(36):e202305677. PubMed ID: 37204428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recyclable and malleable thermosets enabled by activating dormant dynamic linkages.
    Lei Z; Chen H; Luo C; Rong Y; Hu Y; Jin Y; Long R; Yu K; Zhang W
    Nat Chem; 2022 Dec; 14(12):1399-1404. PubMed ID: 36163266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modular Alcohol Click Chemistry Enables Facile Synthesis of Recyclable Polymers with Tunable Structure.
    Xia Y; Sun Y; Liu Z; Zhang C; Zhang X
    Angew Chem Int Ed Engl; 2023 Sep; 62(37):e202306731. PubMed ID: 37490022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recyclable Crosslinked Polymer Networks via One-Step Controlled Radical Polymerization.
    Jin K; Li L; Torkelson JM
    Adv Mater; 2016 Aug; 28(31):6746-50. PubMed ID: 27206061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tough while Recyclable Plastics Enabled by Monothiodilactone Monomers.
    Wang Y; Zhu Y; Lv W; Wang X; Tao Y
    J Am Chem Soc; 2023 Jan; 145(3):1877-1885. PubMed ID: 36594572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complete Degradation of a Conjugated Polymer into Green Upcycling Products by Sunlight in Air.
    Tian S; Yue Q; Liu C; Li M; Yin M; Gao Y; Meng F; Tang BZ; Luo L
    J Am Chem Soc; 2021 Jul; 143(27):10054-10058. PubMed ID: 34181390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical upcycling ofpolymers.
    Stadler BM; de Vries JG
    Philos Trans A Math Phys Eng Sci; 2021 Nov; 379(2209):20200341. PubMed ID: 34510924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in the sustainable design and applications of biodegradable polymers.
    Rai P; Mehrotra S; Priya S; Gnansounou E; Sharma SK
    Bioresour Technol; 2021 Apr; 325():124739. PubMed ID: 33509643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid Monomer Design Synergizing Property Trade-offs in Developing Polymers for Circularity and Performance.
    Shi C; Reilly LT; Chen EY
    Angew Chem Int Ed Engl; 2023 Aug; 62(31):e202301850. PubMed ID: 37072343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymer Multi-Block and Multi-Block
    Si G; Li C; Chen M; Chen C
    Angew Chem Int Ed Engl; 2023 Dec; 62(49):e202311733. PubMed ID: 37850388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.