These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 35546152)

  • 41. Inverse electron-demand diels-alder reactions of tetrazine and norbornene at the air-water interface.
    Nakahara H; Hagimori M; Kannaka K; Mukai T; Shibata O
    Colloids Surf B Biointerfaces; 2022 Mar; 211():112333. PubMed ID: 35038654
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Research advances in methods of cyclezation mechanism of sesquiterpenes].
    Shao YZ; Li YT; Gong T; Zhu P; Yu SS
    Zhongguo Zhong Yao Za Zhi; 2021 Aug; 46(15):3797-3805. PubMed ID: 34472252
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanistic insights into Diels-Alder reactions in natural product biosynthesis.
    Hashimoto T; Kuzuyama T
    Curr Opin Chem Biol; 2016 Dec; 35():117-123. PubMed ID: 27697700
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Highly Norbornylated Cellulose and Its "Click" Modification by an Inverse-Electron Demand Diels-Alder (iEDDA) Reaction.
    Wappl C; Schallert V; Slugovc C; Knall AC; Spirk S
    Molecules; 2021 Mar; 26(5):. PubMed ID: 33806278
    [TBL] [Abstract][Full Text] [Related]  

  • 45. PyBox-La(OTf)
    Wei H; Zhang Y; Jin S; Yu Y; Chen N; Xu J; Yang Z
    Molecules; 2024 Jun; 29(13):. PubMed ID: 38998930
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A cyclase that catalyses competing 2 + 2 and 4 + 2 cycloadditions.
    Wang H; Zou Y; Li M; Tang Z; Wang J; Tian Z; Strassner N; Yang Q; Zheng Q; Guo Y; Liu W; Pan L; Houk KN
    Nat Chem; 2023 Feb; 15(2):177-184. PubMed ID: 36690833
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Diels-Alder Cycloadditions for Peptide Macrocycle Formation.
    Montgomery JE; Moellering RE
    Methods Mol Biol; 2022; 2371():159-174. PubMed ID: 34596848
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Two-step protein labeling by using lipoic acid ligase with norbornene substrates and subsequent inverse-electron demand Diels-Alder reaction.
    Best M; Degen A; Baalmann M; Schmidt TT; Wombacher R
    Chembiochem; 2015 May; 16(8):1158-62. PubMed ID: 25900689
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Iron-sulphur protein catalysed [4+2] cycloadditions in natural product biosynthesis.
    Zheng Y; Sakai K; Watanabe K; Takagi H; Sato-Shiozaki Y; Misumi Y; Miyanoiri Y; Kurisu G; Nogawa T; Takita R; Takahashi S
    Nat Commun; 2024 Jul; 15(1):5779. PubMed ID: 38987535
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of Lewis acid catalysts on Diels-Alder and hetero-Diels-Alder cycloadditions sharing a common transition state.
    Celebi-Olçüm N; Ess DH; Aviyente V; Houk KN
    J Org Chem; 2008 Oct; 73(19):7472-80. PubMed ID: 18781801
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Intramolecular cyclizations of polyketide biosynthesis: mining for a "Diels-Alderase"?
    Kelly WL
    Org Biomol Chem; 2008 Dec; 6(24):4483-93. PubMed ID: 19039353
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The origin of exo-stereoselectivity of norbornene in hetero Diels-Alder reactions.
    Agopcan Cinar S; Ercan S; Erol Gunal S; Dogan I; Aviyente V
    Org Biomol Chem; 2014 Oct; 12(40):8079-86. PubMed ID: 25186050
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Intramolecular Diels-Alder reactions using alpha-methylene lactones as dienophile.
    Richter F; Bauer M; Perez C; Maichle-Mössmer C; Maier ME
    J Org Chem; 2002 Apr; 67(8):2474-80. PubMed ID: 11950290
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanism of the Stereoselective Catalysis of Diels-Alderase PyrE3 Involved in Pyrroindomycin Biosynthesis.
    Li B; Guan X; Yang S; Zou Y; Liu W; Houk KN
    J Am Chem Soc; 2022 Mar; 144(11):5099-5107. PubMed ID: 35258962
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Site-specific enzymatic introduction of a norbornene modified unnatural base into RNA and application in post-transcriptional labeling.
    Domnick C; Eggert F; Kath-Schorr S
    Chem Commun (Camb); 2015 May; 51(39):8253-6. PubMed ID: 25874847
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interrogation of an Enzyme Library Reveals the Catalytic Plasticity of Naturally Evolved [4+2] Cyclases.
    Zorn K; Back CR; Barringer R; Chadimová V; Manzo-Ruiz M; Mbatha SZ; Mobarec JC; Williams SE; van der Kamp MW; Race PR; Willis CL; Hayes MA
    Chembiochem; 2023 Jul; 24(14):e202300382. PubMed ID: 37305956
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enzyme-Dependent [4 + 2] Cycloaddition Depends on Lid-like Interaction of the N-Terminal Sequence with the Catalytic Core in PyrI4.
    Zheng Q; Guo Y; Yang L; Zhao Z; Wu Z; Zhang H; Liu J; Cheng X; Wu J; Yang H; Jiang H; Pan L; Liu W
    Cell Chem Biol; 2016 Mar; 23(3):352-60. PubMed ID: 26877021
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Competitive Diels-Alder reactions: cyclopentadiene and phospholes with butadiene.
    Dinadayalane TC; Gayatri G; Sastry GN; Leszczynski J
    J Phys Chem A; 2005 Oct; 109(41):9310-23. PubMed ID: 16833273
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biomimetic Synthetic Studies on the Bruceol Family of Meroterpenoid Natural Products.
    Day AJ; Sumby CJ; George JH
    J Org Chem; 2020 Feb; 85(4):2103-2117. PubMed ID: 31849214
    [TBL] [Abstract][Full Text] [Related]  

  • 60. How Ionization Catalyzes Diels-Alder Reactions.
    Vermeeren P; Hamlin TA; Bickelhaupt FM
    Chemistry; 2022 Jul; 28(40):e202200987. PubMed ID: 35442551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.