These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 35546165)

  • 1. Temporary cable force monitoring techniques during bridge construction-phase: the Tajo River Viaduct experience.
    Gaute-Alonso A; Garcia-Sanchez D; Alonso-Cobo C; Calderon-Uriszar-Aldaca I
    Sci Rep; 2022 May; 12(1):7689. PubMed ID: 35546165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative mechanical properties of spinal cable and wire fixation systems.
    Dickman CA; Papadopoulos SM; Crawford NR; Brantley AG; Gealer RL
    Spine (Phila Pa 1976); 1997 Mar; 22(6):596-604. PubMed ID: 9089931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calibration of Elasto-Magnetic Sensors on In-Service Cable-Stayed Bridges for Stress Monitoring.
    Cappello C; Zonta D; Laasri HA; Glisic B; Wang M
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29401751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of force tightening on cable tension and displacement in greater trochanter reattachment.
    Canet F; Duke K; Bourgeois Y; Laflamme GY; Brailovski V; Petit Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5749-52. PubMed ID: 22255646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Square-lashing technique in segmental spinal instrumentation: a biomechanical study.
    Arlet V; Draxinger K; Beckman L; Steffen T
    Eur Spine J; 2006 Jul; 15(7):1153-8. PubMed ID: 16470399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-Term In-Service Monitoring and Performance Assessment of the Main Cables of Long-Span Suspension Bridges.
    Deng Y; Liu Y; Chen S
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28621743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of cerclage techniques using a hose clamp versus monofilament cerclage wire or cable.
    Liu A; O'Connor DO; Harris WH
    J Arthroplasty; 1997 Oct; 12(7):772-6. PubMed ID: 9355006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The biomechanical analysis of sublaminar wires and cables using luque segmental spinal instrumentation.
    Parsons JR; Chokshi BV; Lee CK; Gundlapalli RV; Stamer D
    Spine (Phila Pa 1976); 1997 Feb; 22(3):267-73. PubMed ID: 9051888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical performance of different cable and wire cerclage configurations.
    Lenz M; Perren SM; Richards RG; Mückley T; Hofmann GO; Gueorguiev B; Windolf M
    Int Orthop; 2013 Jan; 37(1):125-30. PubMed ID: 23142812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Debris from cobalt-chrome cable may cause acetabular loosening.
    Kelley SS; Johnston RC
    Clin Orthop Relat Res; 1992 Dec; (285):140-6. PubMed ID: 1446430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro biomechanical comparison of multistrand cables with conventional cervical stabilization.
    Weis JC; Cunningham BW; Kanayama M; Parker L; McAfee PC
    Spine (Phila Pa 1976); 1996 Sep; 21(18):2108-14. PubMed ID: 8893435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of sublaminar cables to replace Luque wires.
    Songer MN; Spencer DL; Meyer PR; Jayaraman G
    Spine (Phila Pa 1976); 1991 Aug; 16(8 Suppl):S418-21. PubMed ID: 1785098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A biomechanical comparison of three sternotomy closure techniques.
    Cohen DJ; Griffin LV
    Ann Thorac Surg; 2002 Feb; 73(2):563-8. PubMed ID: 11845875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic simulation of the water quality in rivers based on the IWA RWQM1. Application of the new simulator CalHidra 2.0 to the Tajo River.
    Martín C; Cardona CM; San Martín D; Salterain A; Ayesa E
    Water Sci Technol; 2006; 54(11-12):75-83. PubMed ID: 17302307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated system of structural health monitoring and intelligent management for a cable-stayed bridge.
    Chen B; Wang X; Sun D; Xie X
    ScientificWorldJournal; 2014; 2014():689471. PubMed ID: 25140342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on the Restoration of a Masonry Arch Viaduct: Numerical Analysis and Lab Tests.
    Beben D; Ukleja J; Maleska T; Anigacz W
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32295259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the outcome following the fixation of osteotomies or fractures associated with total hip replacement using cables or wires: the results at five years.
    Berton C; Puskas GJ; Christofilopoulos P; Stern R; Hoffmeyer P; Lübbeke A
    J Bone Joint Surg Br; 2012 Nov; 94(11):1475-81. PubMed ID: 23109625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cluster analysis of stress corrosion mechanisms for steel wires used in bridge cables through acoustic emission particle swarm optimization.
    Li D; Yang W; Zhang W
    Ultrasonics; 2017 May; 77():22-31. PubMed ID: 28167317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extended trochanteric osteotomy (ETO) fixation for femoral stem revision in periprosthetic fractures: Dall-Miles plate versus cables.
    Sheridan GA; Galbraith A; Kearns SR; Curtin W; Murphy CG
    Eur J Orthop Surg Traumatol; 2018 Apr; 28(3):471-476. PubMed ID: 29058079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Posterior spinal osteosynthesis for cervical fracture/dislocation using a flexible multistrand cable system: technical note.
    Huhn SL; Wolf AL; Ecklund J
    Neurosurgery; 1991 Dec; 29(6):943-6. PubMed ID: 1758614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.