These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35546297)

  • 1. A comparison of thermal sensitivities of wing muscle contractile properties from a temperate and tropical bat species.
    Rummel AD; Swartz SM; Marsh RL; Faure PA
    J Exp Biol; 2022 Jun; 225(11):. PubMed ID: 35546297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low thermal dependence of the contractile properties of a wing muscle in the bat
    Rummel AD; Swartz SM; Marsh RL
    J Exp Biol; 2018 Jul; 221(Pt 14):. PubMed ID: 29844201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A proximal-distal difference in bat wing muscle thermal sensitivity parallels a difference in operating temperatures along the wing.
    Rummel AD; Swartz SM; Marsh RL
    Proc Biol Sci; 2021 May; 288(1950):20210009. PubMed ID: 33975475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal Stability of Contractile Proteins in Bat Wing Muscles Explains Differences in Temperature Dependence of Whole-Muscle Shortening Velocity.
    Rummel AD; Swartz SM; Marsh RL
    Physiol Biochem Zool; 2023; 96(2):100-105. PubMed ID: 36921272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Warm bodies, cool wings: regional heterothermy in flying bats.
    Rummel AD; Swartz SM; Marsh RL
    Biol Lett; 2019 Sep; 15(9):20190530. PubMed ID: 31506035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speed-dependent modulation of wing muscle recruitment intensity and kinematics in two bat species.
    Konow N; Cheney JA; Roberts TJ; Iriarte-Díaz J; Breuer KS; Waldman JRS; Swartz SM
    J Exp Biol; 2017 May; 220(Pt 10):1820-1829. PubMed ID: 28235906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organization of the primary somatosensory cortex and wing representation in the Big Brown Bat, Eptesicus fuscus.
    Chadha M; Moss CF; Sterbing-D'Angelo SJ
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Jan; 197(1):89-96. PubMed ID: 20878405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trapped in the darkness of the night: thermal and energetic constraints of daylight flight in bats.
    Voigt CC; Lewanzik D
    Proc Biol Sci; 2011 Aug; 278(1716):2311-7. PubMed ID: 21208959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simplifying a wing: diversity and functional consequences of digital joint reduction in bat wings.
    Bahlman JW; Price-Waldman RM; Lippe HW; Breuer KS; Swartz SM
    J Anat; 2016 Jul; 229(1):114-27. PubMed ID: 26969851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flight performance and wing morphology in the bat Carollia perspicillata: biophysical models and energetics.
    Carneiro LO; Mellado B; Nogueira MR; Cruz-Neto APD; Monteiro LR
    Integr Zool; 2023 Sep; 18(5):876-890. PubMed ID: 36610047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diversity in the organization of elastin bundles and intramembranous muscles in bat wings.
    Cheney JA; Allen JJ; Swartz SM
    J Anat; 2017 Apr; 230(4):510-523. PubMed ID: 28070887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absorption of visible spectrum radiation by the wing membranes of living pteropodid bats.
    Thomson SC; Speakman JR
    J Comp Physiol B; 1999 Apr; 169(3):187-94. PubMed ID: 10335616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphology and deflection properties of bat wing sensory hairs: scanning electron microscopy, laser scanning vibrometry, and mechanics model.
    Sterbing-D'Angelo SJ; Liu H; Yu M; Moss CF
    Bioinspir Biomim; 2016 Aug; 11(5):056008. PubMed ID: 27545727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional role of airflow-sensing hairs on the bat wing.
    Sterbing-D'Angelo SJ; Chadha M; Marshall KL; Moss CF
    J Neurophysiol; 2017 Feb; 117(2):705-712. PubMed ID: 27852729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of bat flight: morphologic and molecular evolution of bat wing digits.
    Sears KE; Behringer RR; Rasweiler JJ; Niswander LA
    Proc Natl Acad Sci U S A; 2006 Apr; 103(17):6581-6. PubMed ID: 16618938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Somatosensory substrates of flight control in bats.
    Marshall KL; Chadha M; deSouza LA; Sterbing-D'Angelo SJ; Moss CF; Lumpkin EA
    Cell Rep; 2015 May; 11(6):851-858. PubMed ID: 25937277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ventral wing hairs provide tactile feedback for aerial prey capture in the big brown bat, Eptesicus fuscus.
    Boublil BL; Yu C; Shewmaker G; Sterbing S; Moss CF
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2024 Sep; 210(5):761-770. PubMed ID: 38097720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behavior and muscle performance in heterothermic bats.
    Choi IH; Cho Y; Oh YK; Jung NP; Shin HC
    Physiol Zool; 1998; 71(3):257-66. PubMed ID: 9634172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capillary-fiber geometry in pectoralis muscles of one of the smallest bats.
    Mathieu-Costello O; Agey PJ; Szewczak JM
    Respir Physiol; 1994 Feb; 95(2):155-69. PubMed ID: 8191038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A chemo-mechanical constitutive model for muscle activation in bat wing skins.
    Skulborstad A; Goulbourne NC
    J R Soc Interface; 2024 Jul; 21(216):20230593. PubMed ID: 38981517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.