These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 35546604)
1. Real-time complex light field generation through a multi-core fiber with deep learning. Sun J; Wu J; Koukourakis N; Cao L; Kuschmierz R; Czarske J Sci Rep; 2022 May; 12(1):7732. PubMed ID: 35546604 [TBL] [Abstract][Full Text] [Related]
2. Towards real-time photorealistic 3D holography with deep neural networks. Shi L; Li B; Kim C; Kellnhofer P; Matusik W Nature; 2021 Mar; 591(7849):234-239. PubMed ID: 33692557 [TBL] [Abstract][Full Text] [Related]
3. Phase dual-resolution networks for a computer-generated hologram. Yu T; Zhang S; Chen W; Liu J; Zhang X; Tian Z Opt Express; 2022 Jan; 30(2):2378-2389. PubMed ID: 35209379 [TBL] [Abstract][Full Text] [Related]
4. Phase-shifting with computer-generated holograms written on a spatial light modulator. Guo CS; Rong ZY; Wang HT; Wang Y; Cai LZ Appl Opt; 2003 Dec; 42(35):6975-9. PubMed ID: 14674642 [TBL] [Abstract][Full Text] [Related]
5. Calibration-free quantitative phase imaging in multi-core fiber endoscopes using end-to-end deep learning. Sun J; Zhao B; Wang D; Wang Z; Zhang J; Koukourakis N; Czarske JW; Li X Opt Lett; 2024 Jan; 49(2):342-345. PubMed ID: 38194563 [TBL] [Abstract][Full Text] [Related]
6. DeepCGH: 3D computer-generated holography using deep learning. Hossein Eybposh M; Caira NW; Atisa M; Chakravarthula P; Pégard NC Opt Express; 2020 Aug; 28(18):26636-26650. PubMed ID: 32906933 [TBL] [Abstract][Full Text] [Related]
7. Spatial bandwidth analysis of fast backward Fresnel diffraction for precise computer-generated hologram design. Liang J; Becker MF Appl Opt; 2014 Sep; 53(27):G84-94. PubMed ID: 25322140 [TBL] [Abstract][Full Text] [Related]
9. Fast reconfiguration algorithm of computer generated holograms for adaptive view direction change in holographic three-dimensional display. Cho J; Hahn J; Kim H Opt Express; 2012 Dec; 20(27):28282-91. PubMed ID: 23263063 [TBL] [Abstract][Full Text] [Related]
10. Deep Learning-Based Framework for Fast and Accurate Acoustic Hologram Generation. Lee MH; Lew HM; Youn S; Kim T; Hwang JY IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Dec; 69(12):3353-3366. PubMed ID: 36331635 [TBL] [Abstract][Full Text] [Related]
11. Lensless two-photon imaging through a multicore fiber with coherence-gated digital phase conjugation. Conkey DB; Stasio N; Morales-Delgado EE; Romito M; Moser C; Psaltis D J Biomed Opt; 2016 Apr; 21(4):45002. PubMed ID: 27086688 [TBL] [Abstract][Full Text] [Related]
12. High-speed computer-generated holography using an autoencoder-based deep neural network. Wu J; Liu K; Sui X; Cao L Opt Lett; 2021 Jun; 46(12):2908-2911. PubMed ID: 34129571 [TBL] [Abstract][Full Text] [Related]
19. Computer Generated Holography with Intensity-Graded Patterns. Conti R; Assayag O; de Sars V; Guillon M; Emiliani V Front Cell Neurosci; 2016; 10():236. PubMed ID: 27799896 [TBL] [Abstract][Full Text] [Related]
20. An interactive holographic projection system that uses a hand-drawn interface with a consumer CPU. Nishitsuji T; Kakue T; Blinder D; Shimobaba T; Ito T Sci Rep; 2021 Jan; 11(1):147. PubMed ID: 33420135 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]