These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35546678)

  • 1. Overexpressing Arabidopsis thaliana ACBP6 in transgenic rapid-cycling Brassica napus confers cold tolerance.
    Alahakoon AY; Tongson E; Meng W; Ye ZW; Russell DA; Chye ML; Golz JF; Taylor PWJ
    Plant Methods; 2022 May; 18(1):62. PubMed ID: 35546678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arabidopsis acyl-CoA-binding protein ACBP6 localizes in the phloem and affects jasmonate composition.
    Ye ZW; Lung SC; Hu TH; Chen QF; Suen YL; Wang M; Hoffmann-Benning S; Yeung E; Chye ML
    Plant Mol Biol; 2016 Dec; 92(6):717-730. PubMed ID: 27645136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of the Arabidopsis 10-kilodalton acyl-coenzyme A-binding protein ACBP6 enhances freezing tolerance.
    Chen QF; Xiao S; Chye ML
    Plant Physiol; 2008 Sep; 148(1):304-15. PubMed ID: 18621979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erratum: High-Throughput Identification of Resistance to Pseudomonas syringae pv. Tomato in Tomato using Seedling Flood Assay.
    J Vis Exp; 2023 Oct; (200):. PubMed ID: 37851522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BnNAC485 is involved in abiotic stress responses and flowering time in Brassica napus.
    Ying L; Chen H; Cai W
    Plant Physiol Biochem; 2014 Jun; 79():77-87. PubMed ID: 24690671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arabidopsis thaliana Acyl-CoA-binding protein ACBP6 interacts with plasmodesmata-located protein PDLP8.
    Ye ZW; Chen QF; Chye ML
    Plant Signal Behav; 2017 Aug; 12(8):e1359365. PubMed ID: 28786767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the In Vitro Regeneration Potential of Commercial Cultivars of
    Farooq N; Nawaz MA; Mukhtar Z; Ali I; Hundleby P; Ahmad N
    Plants (Basel); 2019 Nov; 8(12):. PubMed ID: 31795525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of three
    Liu F; Wang P; Xiong X; Fu P; Gao H; Ding X; Wu G
    Plant Methods; 2020; 16():81. PubMed ID: 32518583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species.
    Jaglo KR; Kleff S; Amundsen KL; Zhang X; Haake V; Zhang JZ; Deits T; Thomashow MF
    Plant Physiol; 2001 Nov; 127(3):910-7. PubMed ID: 11706173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea.
    Bhalla PL; Singh MB
    Nat Protoc; 2008; 3(2):181-9. PubMed ID: 18274519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of Brassica napus (canola) explant regeneration for genetic transformation.
    Maheshwari P; Selvaraj G; Kovalchuk I
    N Biotechnol; 2011 Dec; 29(1):144-55. PubMed ID: 21722759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing freezing tolerance of Brassica napus L. by overexpression of a stearoyl-acyl carrier protein desaturase gene (SAD) from Sapium sebiferum (L.) Roxb.
    Peng D; Zhou B; Jiang Y; Tan X; Yuan D; Zhang L
    Plant Sci; 2018 Jul; 272():32-41. PubMed ID: 29807604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants.
    Cardoza V; Stewart CN
    Plant Cell Rep; 2003 Feb; 21(6):599-604. PubMed ID: 12789436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sef1, rapid-cycling Brassica napus for large-scale functional genome research in a controlled environment.
    Xie X; Jiang Y; Xu W; Yang W; Lei W; Qian D; Gao J; Cai F; Yu D; Ke L; Fan Z
    Theor Appl Genet; 2023 Jun; 136(7):163. PubMed ID: 37368122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved Agrobacterium-mediated transformation and high efficiency of root formation from hypocotyl meristem of spring Brassica napus 'Precocity' cultivar.
    Liu XX; Lang SR; Su LQ; Liu X; Wang XF
    Genet Mol Res; 2015 Dec; 14(4):16840-55. PubMed ID: 26681030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide identification of biotin carboxyl carrier subunits of acetyl-CoA carboxylase in Brassica and their role in stress tolerance in oilseed Brassica napus.
    Megha S; Wang Z; Kav NNV; Rahman H
    BMC Genomics; 2022 Oct; 23(1):707. PubMed ID: 36253756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hairy Canola (Brasssica napus) re-visited: Down-regulating TTG1 in an AtGL3-enhanced hairy leaf background improves growth, leaf trichome coverage, and metabolite gene expression diversity.
    Alahakoon UI; Taheri A; Nayidu NK; Epp D; Yu M; Parkin I; Hegedus D; Bonham-Smith P; Gruber MY
    BMC Plant Biol; 2016 Jan; 16():12. PubMed ID: 26739276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of ice recrystallization inhibition protein in transgenic potato lines associated with reduced electrolyte leakage and efficient recovery post freezing injury.
    Aaliya K; Nasir IA; Khan A; Toufiq N; Yousaf I; Adeyinka OS; Iftikhar S; Farooq AM; Tabassum B
    J Biotechnol; 2021 Feb; 327():97-105. PubMed ID: 33450348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of Arabidopsis thaliana Thioredoxin-h2 in Brassica napus enhances antioxidant defenses and improves salt tolerance.
    Ji MG; Park HJ; Cha JY; Kim JA; Shin GI; Jeong SY; Lee ES; Yun DJ; Lee SY; Kim WY
    Plant Physiol Biochem; 2020 Feb; 147():313-321. PubMed ID: 31901883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-Wide Identification and Analysis of the Valine-Glutamine Motif-Containing Gene Family in
    Zou Z; Liu F; Huang S; Fernando WGD
    Phytopathology; 2021 Feb; 111(2):281-292. PubMed ID: 32804045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.