These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 35546724)
1. Cleaning effects of decontamination methods on clinically failed TiUnite implants and their impacts on surface roughness and chemistry: An in vitro pilot study. Qian Y; Tong Z; Cai B; Zhu W; Si M Int J Oral Implantol (Berl); 2022 May; 15(2):149-165. PubMed ID: 35546724 [TBL] [Abstract][Full Text] [Related]
2. Changes in the surface topography and element proportion of clinically failed SLA implants after in vitro debridement by different methods. Tong Z; Fu R; Zhu W; Shi J; Yu M; Si M Clin Oral Implants Res; 2021 Mar; 32(3):263-273. PubMed ID: 33314381 [TBL] [Abstract][Full Text] [Related]
3. Comparison of decontamination efficacy of two electrolyte cleaning methods to diode laser, plasma, and air-abrasive devices. Zipprich H; Weigl P; Di Gianfilippo R; Steigmann L; Henrich D; Wang HL; Schlee M; Ratka C Clin Oral Investig; 2022 Jun; 26(6):4549-4558. PubMed ID: 35322316 [TBL] [Abstract][Full Text] [Related]
4. Cleaning potential of different air abrasive powders and their impact on implant surface roughness. Matsubara VH; Leong BW; Leong MJL; Lawrence Z; Becker T; Quaranta A Clin Implant Dent Relat Res; 2020 Feb; 22(1):96-104. PubMed ID: 31837107 [TBL] [Abstract][Full Text] [Related]
5. Air-polishing technology is an effective alternative chairside method for cleaning dentures. Gunawan V; Carrington SD; Choi YJ; Choi JJE Int J Dent Hyg; 2024 Aug; 22(3):626-638. PubMed ID: 37680139 [TBL] [Abstract][Full Text] [Related]
6. In vitro effect of different implant decontamination methods in three intraosseous defect configurations. Luengo F; Sanz-Esporrín J; Noguerol F; Sanz-Martín I; Sanz-Sánchez I; Sanz M Clin Oral Implants Res; 2022 Nov; 33(11):1087-1097. PubMed ID: 35997508 [TBL] [Abstract][Full Text] [Related]
7. Clinical outcomes following periodontal surgery and root surface decontamination by erythritol-based air polishing. A randomized, controlled, clinical pilot study. Cosgarea R; Jepsen S; Fimmers R; Bodea A; Eick S; Sculean A Clin Oral Investig; 2021 Feb; 25(2):627-635. PubMed ID: 32839833 [TBL] [Abstract][Full Text] [Related]
8. Cleaning and modification of intraorally contaminated titanium discs with calcium phosphate powder abrasive treatment. Tastepe CS; Liu Y; Visscher CM; Wismeijer D Clin Oral Implants Res; 2013 Nov; 24(11):1238-46. PubMed ID: 22882522 [TBL] [Abstract][Full Text] [Related]
9. The effect of five mechanical instrumentation protocols on implant surface topography and roughness: A scanning electron microscope and confocal laser scanning microscope analysis. Cha JK; Paeng K; Jung UW; Choi SH; Sanz M; Sanz-Martín I Clin Oral Implants Res; 2019 Jun; 30(6):578-587. PubMed ID: 31022305 [TBL] [Abstract][Full Text] [Related]
10. In vitro surgical and non-surgical air-polishing efficacy for implant surface decontamination in three different defect configurations. Tuchscheerer V; Eickholz P; Dannewitz B; Ratka C; Zuhr O; Petsos H Clin Oral Investig; 2021 Apr; 25(4):1743-1754. PubMed ID: 32813077 [TBL] [Abstract][Full Text] [Related]
11. Effects of ultrasonic scaler tips and toothbrush on titanium disc surfaces evaluated with confocal microscopy. Park JB; Kim N; Ko Y J Craniofac Surg; 2012 Sep; 23(5):1552-8. PubMed ID: 22976659 [TBL] [Abstract][Full Text] [Related]
12. Efficacy of Biofilm Removal on the Dental Implant Surface by Sodium Bicarbonate and Erythritol Powder Airflow System. Pujarern P; Klaophimai A; Amornsettachai P; Panyayong W; Chuenjitkuntaworn B; Rokaya D; Suphangul S Eur J Dent; 2024 Oct; 18(4):1022-1029. PubMed ID: 38555648 [TBL] [Abstract][Full Text] [Related]
13. Instrumentation With Ultrasonic Scalers Facilitates Cleaning of the Sandblasted and Acid-Etched Titanium Implants. Park JB; Lee SH; Kim N; Park S; Jin SH; Choi BK; Kim KK; Ko Y J Oral Implantol; 2015 Aug; 41(4):419-28. PubMed ID: 24552131 [TBL] [Abstract][Full Text] [Related]
14. Efficiency of cold atmospheric plasma, cleaning powders and their combination for biofilm removal on two different titanium implant surfaces. Kamionka J; Matthes R; Holtfreter B; Pink C; Schlüter R; von Woedtke T; Kocher T; Jablonowski L Clin Oral Investig; 2022 Mar; 26(3):3179-3187. PubMed ID: 34988694 [TBL] [Abstract][Full Text] [Related]
15. Effects of an amino acid buffered hypochlorite solution as an adjunctive to air-powder abrasion in open-flap surface decontamination of implants failed for peri-implantitis: an ex vivo randomized clinical trial. La Monaca G; Pranno N; Mengoni F; Puggioni G; Polimeni A; Annibali S; Cristalli MP Clin Oral Investig; 2023 Feb; 27(2):827-835. PubMed ID: 35802191 [TBL] [Abstract][Full Text] [Related]
16. Su W; Li J; Jiang L; Cui W; Zhao Y; Li H Hua Xi Kou Qiang Yi Xue Za Zhi; 2023 Jun; 41(3):350-355. PubMed ID: 37277802 [TBL] [Abstract][Full Text] [Related]
17. Re-establishment of Biocompatibility of the In Vitro Contaminated Titanium Surface Using Osteoconductive Powders With Air-Abrasive Treatment. Tastepe CS; Lin X; Donnet M; Doulabi BZ; Wismeijer D; Liu Y J Oral Implantol; 2018 Apr; 44(2):94-101. PubMed ID: 29303415 [TBL] [Abstract][Full Text] [Related]
18. Effect of air-polishing on surface roughness of composite dental restorative material - comparison of three different air-polishing powders. Janiszewska-Olszowska J; Drozdzik A; Tandecka K; Grocholewicz K BMC Oral Health; 2020 Jan; 20(1):30. PubMed ID: 32000753 [TBL] [Abstract][Full Text] [Related]
19. In vitro cleaning potential of three different implant debridement methods. Sahrmann P; Ronay V; Hofer D; Attin T; Jung RE; Schmidlin PR Clin Oral Implants Res; 2015 Mar; 26(3):314-9. PubMed ID: 24373056 [TBL] [Abstract][Full Text] [Related]
20. Effects of Surface Conditions of Titanium Dental Implants on Bacterial Adhesion. Chen CJ; Ding SJ; Chen CC Photomed Laser Surg; 2016 Sep; 34(9):379-88. PubMed ID: 27454339 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]