These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35546838)

  • 1. Chirality-sorted carbon nanotube films as high capacity electrode materials.
    Krukiewicz K; Krzywiecki M; Biggs MJP; Janas D
    RSC Adv; 2018 Aug; 8(53):30600-30609. PubMed ID: 35546838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Growth of a High-Performance All-Solid-State Electrode for Flexible Supercapacitors Based on a PANI/CNT/EVA Composite.
    Guan X; Kong D; Huang Q; Cao L; Zhang P; Lin H; Lin Z; Yuan H
    Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and Electrochemical Performance of PVA/CNT/PANI Flexible Films as Electrodes for Supercapacitors.
    Ben J; Song Z; Liu X; Lü W; Li X
    Nanoscale Res Lett; 2020 Jul; 15(1):151. PubMed ID: 32699960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen Evolution Assisted Fabrication of Highly Loaded Carbon Nanotube/MnO2 Hybrid Films for High-Performance Flexible Pseudosupercapacitors.
    Chen H; Zeng S; Chen M; Zhang Y; Zheng L; Li Q
    Small; 2016 Apr; 12(15):2035-45. PubMed ID: 26929042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemically Oxidized Carbon Nanotube Sheets for High-Performance and Flexible-Film Supercapacitors.
    Noh JH; Choi J; Seo H; Kim J; Choi C
    Nanomaterials (Basel); 2023 Oct; 13(20):. PubMed ID: 37887964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polypyrrole/Carbon Nanotube Freestanding Electrode with Excellent Electrochemical Properties for High-Performance All-Solid-State Supercapacitors.
    Parayangattil Jyothibasu J; Chen MZ; Lee RH
    ACS Omega; 2020 Mar; 5(12):6441-6451. PubMed ID: 32258879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carboxymethylcellulose-polyaniline/carbon nanotube (CMC-PANI/CNT) film as flexible and highly electrochemical active electrode for supercapacitors.
    Xu H; Cui L; Pan X; An Y; Jin X
    Int J Biol Macromol; 2022 Oct; 219():1135-1145. PubMed ID: 36049565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensional MoS
    Wang S; Zhu J; Shao Y; Li W; Wu Y; Zhang L; Hao X
    Chemistry; 2017 Mar; 23(14):3438-3446. PubMed ID: 28078805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Writing Supercapacitors Using a Carbon Nanotube/Ag Nanoparticle-Based Ink on Cellulose Acetate Membrane Paper.
    Guan X; Cao L; Huang Q; Kong D; Zhang P; Lin H; Li W; Lin Z; Yuan H
    Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31163632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly flexible and free-standing carbon nanotube/hollow carbon nanocage hybrid films for high-performance supercapacitors.
    Shi QQ; Zhan H; Zhang Y; Wang JN
    RSC Adv; 2021 Feb; 11(12):6655-6661. PubMed ID: 35423176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon Nanotube Fibers Decorated with MnO
    Zhang L; Zhang X; Wang J; Seveno D; Fransaer J; Locquet JP; Seo JW
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34200479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric carbon nanotube-MnO₂ two-ply yarn supercapacitors for wearable electronics.
    Su F; Miao M
    Nanotechnology; 2014 Apr; 25(13):135401. PubMed ID: 24583526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon nanotube network film directly grown on carbon cloth for high-performance solid-state flexible supercapacitors.
    Zhou C; Liu J
    Nanotechnology; 2014 Jan; 25(3):035402. PubMed ID: 24356470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors.
    Zheng Q; Cai Z; Ma Z; Gong S
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3263-71. PubMed ID: 25625769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraordinary Thickness-Independent Electrochemical Energy Storage Enabled by Cross-Linked Microporous Carbon Nanosheets.
    Yuan G; Liang Y; Hu H; Li H; Xiao Y; Dong H; Liu Y; Zheng M
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):26946-26955. PubMed ID: 31271278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-performance two-ply yarn supercapacitors based on carbon nanotube yarns dotted with Co3 O4 and NiO nanoparticles.
    Su F; Lv X; Miao M
    Small; 2015 Feb; 11(7):854-61. PubMed ID: 25277293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors.
    Jin Y; Chen H; Chen M; Liu N; Li Q
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3408-16. PubMed ID: 23488813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Energy Density of Coaxial Fiber Asymmetric Supercapacitor Based on MoS
    He H; Yang X; Wang L; Zhang X; Li X; Lü W
    Chemistry; 2020 Dec; 26(71):17212-17221. PubMed ID: 32954578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Performance Supercapacitors from Niobium Nanowire Yarns.
    Mirvakili SM; Mirvakili MN; Englezos P; Madden JD; Hunter IW
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13882-8. PubMed ID: 26068246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boosting the electrochemical properties of carbon materials as bipolar electrodes by introducing oxygen functional groups.
    Zhang Y; Liu Y; Bai Y; Liu Y; Xie E
    RSC Adv; 2020 Sep; 10(58):35295-35301. PubMed ID: 35515698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.