These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35547027)

  • 21. Rhenium Sulfide Incorporated in Molybdenum Sulfide Nanosheets for High-Performance Symmetric Supercapacitors with Enhanced Capacitance.
    Manoj S; Sadhanala HK; Perelshtein I; Gedanken A
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18570-18577. PubMed ID: 35414171
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%.
    Santra PK; Kamat PV
    J Am Chem Soc; 2012 Feb; 134(5):2508-11. PubMed ID: 22280479
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A strategy to improve the energy conversion efficiency and stability of quantum dot-sensitized solar cells using manganese-doped cadmium sulfide quantum dots.
    Gopi CV; Venkata-Haritha M; Kim SK; Kim HJ
    Dalton Trans; 2015 Jan; 44(2):630-8. PubMed ID: 25381887
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MOF-derived Cu
    Chen M; Yin F; Du Z; Sun Z; Zou X; Bao X; Pan Z; Tang J
    J Colloid Interface Sci; 2022 Dec; 628(Pt A):22-30. PubMed ID: 35908428
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficient PbS/CdS co-sensitized solar cells based on TiO2 nanorod arrays.
    Li Y; Wei L; Chen X; Zhang R; Sui X; Chen Y; Jiao J; Mei L
    Nanoscale Res Lett; 2013 Feb; 8(1):67. PubMed ID: 23394609
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering the synthesized colloidal CuInS
    Liang Z; Chen Y; Zhang R; Zhang K; Ba K; Lin Y; Wang D; Xie T
    Dalton Trans; 2022 Nov; 51(45):17292-17300. PubMed ID: 36317601
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In situ grown Ni
    Li S; Chen T; Wen J; Gui P; Fang G
    Nanotechnology; 2017 Nov; 28(44):445407. PubMed ID: 28869216
    [TBL] [Abstract][Full Text] [Related]  

  • 28. C
    Yu X; Ge W; Fan L; Fan B; Peng R; Jin B
    J Colloid Interface Sci; 2023 Nov; 650(Pt A):553-559. PubMed ID: 37423182
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High Efficiency CdS/CdSe Quantum Dot Sensitized Solar Cells with Two ZnSe Layers.
    Huang F; Zhang L; Zhang Q; Hou J; Wang H; Wang H; Peng S; Liu J; Cao G
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34482-34489. PubMed ID: 27936551
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CuS/CdS Quantum Dot Composite Sensitizer and Its Applications to Various TiO2 Mesoporous Film-Based Solar Cell Devices.
    Kim M; Ochirbat A; Lee HJ
    Langmuir; 2015 Jul; 31(27):7609-15. PubMed ID: 26086801
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ag plasmonic nanostructures and a novel gel electrolyte in a high efficiency TiO2/CdS solar cell.
    Kumar PN; Deepa M; Srivastava AK
    Phys Chem Chem Phys; 2015 Apr; 17(15):10040-52. PubMed ID: 25785507
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A microwave synthesized CuxS and graphene oxide nanoribbon composite as a highly efficient counter electrode for quantum dot sensitized solar cells.
    Ghosh D; Halder G; Sahasrabudhe A; Bhattacharyya S
    Nanoscale; 2016 May; 8(20):10632-41. PubMed ID: 27146800
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitrogen-Doped Mesoporous Carbons as Counter Electrodes in Quantum Dot Sensitized Solar Cells with a Conversion Efficiency Exceeding 12.
    Jiao S; Du J; Du Z; Long D; Jiang W; Pan Z; Li Y; Zhong X
    J Phys Chem Lett; 2017 Feb; 8(3):559-564. PubMed ID: 28075601
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of Nitrogen-Enriched 1T/2H-MoS
    Franklin MC; Manickam S; Sunil L; Sisubalan A; Elayappan V; Kuzhandaivel H; Sivalingam Nallathambi K
    ACS Appl Mater Interfaces; 2024 Sep; 16(38):50587-50601. PubMed ID: 39259512
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antimony tin oxide/lead selenide composite as efficient counter electrode material for quantum dot-sensitized solar cells.
    Jin BB; Huang HS; Kong SY; Zhang GQ; Yang B; Jiang CX; Zhou Y; Wang DJ; Zeng JH
    J Colloid Interface Sci; 2021 Sep; 598():492-499. PubMed ID: 33951547
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A strategy to enhance the efficiency of dye-sensitized solar cells by the highly efficient TiO2/ZnS photoanode.
    Srinivasa Rao S; Punnoose D; Venkata Tulasivarma Ch; Pavan Kumar CH; Gopi CV; Kim SK; Kim HJ
    Dalton Trans; 2015 Feb; 44(5):2447-55. PubMed ID: 25556975
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly active Z-scheme heterojunction photocatalyst of anatase TiO
    Nguyen VQ; Mady AH; Mahadadalkar MA; Baynosa ML; Kumar DR; Rabie AM; Lee J; Kim WK; Shim JJ
    J Colloid Interface Sci; 2022 Jan; 606(Pt 1):337-352. PubMed ID: 34392030
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Study of Metal Sulfide as Efficient Counter Electrodes on the Performances of CdS/CdSe/ZnS-co-sensitized Hierarchical TiO
    Buatong N; Tang IM; Pon-On W
    Nanoscale Res Lett; 2017 Dec; 12(1):170. PubMed ID: 28274089
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A stoichiometric CdS interlayer for the photovoltaic performance enhancement of quantum-dot sensitized solar cells.
    Chen S; Wang Y; Lu S; Liu Y; Zhang X
    Phys Chem Chem Phys; 2019 Feb; 21(7):3970-3975. PubMed ID: 30706911
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimization and scalability assessment of supercapacitor electrodes based on hydrothermally grown MoS
    Mannayil J; Pitkänen O; Mannerkorpi M; Kordas K
    Nanoscale Adv; 2024 Sep; 6(18):4647-4656. PubMed ID: 39263393
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.