BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 35547573)

  • 1. Flexible Thermal Sensitivity of Mitochondrial Oxygen Consumption and Substrate Oxidation in Flying Insect Species.
    Menail HA; Cormier SB; Ben Youssef M; Jørgensen LB; Vickruck JL; Morin P; Boudreau LH; Pichaud N
    Front Physiol; 2022; 13():897174. PubMed ID: 35547573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the thermal sensitivity of key enzymes involved in the energetic metabolism of three insect species.
    Léger A; Cormier SB; Blanchard A; Menail HA; Pichaud N
    J Exp Biol; 2024 May; 227(10):. PubMed ID: 38680096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dramatic changes in mitochondrial substrate use at critically high temperatures: a comparative study using
    Jørgensen LB; Overgaard J; Hunter-Manseau F; Pichaud N
    J Exp Biol; 2021 Mar; 224(Pt 6):. PubMed ID: 33563650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate use and temperature effects in flight muscle mitochondria from an endothermic insect, the hawkmoth Manduca sexta.
    Wilmsen SM; Dzialowski E
    Comp Biochem Physiol A Mol Integr Physiol; 2023 Jul; 281():111439. PubMed ID: 37119960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Balanced mitochondrial function at low temperature is linked to cold adaptation in Drosophila species.
    Jørgensen LB; Hansen AM; Willot Q; Overgaard J
    J Exp Biol; 2023 Apr; 226(8):. PubMed ID: 36939380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flies on the rise: acclimation effect on mitochondrial oxidation capacity at normal and high temperatures in Drosophila melanogaster.
    Blanchard A; Aminot M; Gould N; Léger A; Pichaud N
    J Exp Biol; 2024 Jun; 227(12):. PubMed ID: 38841909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Succinate oxidation rescues mitochondrial ATP synthesis at high temperature in Drosophila melanogaster.
    Roussel D; Janillon S; Teulier L; Pichaud N
    FEBS Lett; 2023 Sep; 597(17):2221-2229. PubMed ID: 37463836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overwintering in North American domesticated honeybees (Apis mellifera) causes mitochondrial reprogramming while enhancing cellular immunity.
    Cormier SB; Léger A; Boudreau LH; Pichaud N
    J Exp Biol; 2022 Aug; 225(16):. PubMed ID: 35938391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The development of thermotolerance protects blowfly flight muscle mitochondrial function from heat damage.
    El-Wadawi R; Bowler K
    J Exp Biol; 1995; 198(Pt 11):2413-21. PubMed ID: 9320335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of thermal stability during flight in the honeybee apis mellifera.
    Roberts SP; Harrison JF
    J Exp Biol; 1999 Jun; 202 (Pt 11)():1523-33. PubMed ID: 10229698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy substrates for flight in the blister beetle Decapotoma lunata (Meloidae).
    Auerswald L; GADe G
    J Exp Biol; 1995; 198(Pt 6):1423-31. PubMed ID: 9319322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic Characterization and Consequences of Mitochondrial Pyruvate Carrier Deficiency in
    Simard C; Lebel A; Allain EP; Touaibia M; Hebert-Chatelain E; Pichaud N
    Metabolites; 2020 Sep; 10(9):. PubMed ID: 32899962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unique features of flight muscles mitochondria of honey bees (Apis mellifera L.).
    Syromyatnikov MY; Gureev AP; Vitkalova IY; Starkov AA; Popov VN
    Arch Insect Biochem Physiol; 2019 Sep; 102(1):e21595. PubMed ID: 31276240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cold acclimation allows Drosophila flies to maintain mitochondrial functioning under cold stress.
    Colinet H; Renault D; Roussel D
    Insect Biochem Mol Biol; 2017 Jan; 80():52-60. PubMed ID: 27903433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related flexibility of energetic metabolism in the honey bee Apis mellifera.
    Menail HA; Cormier SB; Léger A; Robichaud S; Hebert-Chatelain E; Lamarre SG; Pichaud N
    FASEB J; 2023 Nov; 37(11):e23222. PubMed ID: 37781970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial physiology in the major arbovirus vector Aedes aegypti: substrate preferences and sexual differences define respiratory capacity and superoxide production.
    Soares JB; Gaviraghi A; Oliveira MF
    PLoS One; 2015; 10(3):e0120600. PubMed ID: 25803027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial glycerol phosphate oxidation is modulated by adenylates through allosteric regulation of cytochrome c oxidase activity in mosquito flight muscle.
    Gaviraghi A; Correa Soares JBR; Mignaco JA; Fontes CFL; Oliveira MF
    Insect Biochem Mol Biol; 2019 Nov; 114():103226. PubMed ID: 31446033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The scaling of carbon dioxide release and respiratory water loss in flying fruit flies (Drosophila spp.).
    Lehmann FO; Dickinson MH; Staunton J
    J Exp Biol; 2000 May; 203(Pt 10):1613-24. PubMed ID: 10769223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of a physiological increase in temperature on mitochondrial fatty acid oxidation in rat myofibers.
    Tardo-Dino PE; Touron J; Baugé S; Bourdon S; Koulmann N; Malgoyre A
    J Appl Physiol (1985); 2019 Aug; 127(2):312-319. PubMed ID: 31161881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of temperature on complexes I and II mediated respiration, ROS generation and oxidative stress status in isolated gill mitochondria of the mud crab Scylla serrata.
    Paital B; Chainy GB
    J Therm Biol; 2014 Apr; 41():104-11. PubMed ID: 24679979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.