These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35547714)

  • 1. Dual release kinetics in a single dosage from core-shell hydrogel scaffolds.
    Khan F; Bera D; Palchaudhuri S; Bera R; Mukhopadhyay M; Dey A; Goswami S; Das S
    RSC Adv; 2018 Sep; 8(57):32695-32706. PubMed ID: 35547714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printed core-shell hydrogel fiber scaffolds with NIR-triggered drug release for localized therapy of breast cancer.
    Wei X; Liu C; Wang Z; Luo Y
    Int J Pharm; 2020 Apr; 580():119219. PubMed ID: 32165221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D printed hydrogel/PCL core/shell fiber scaffolds with NIR-triggered drug release for cancer therapy and wound healing.
    Liu C; Wang Z; Wei X; Chen B; Luo Y
    Acta Biomater; 2021 Sep; 131():314-325. PubMed ID: 34256189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Temperature-Dependent Hydrogel Emulsion with Sol/Gel Reversible Phase Transition Behavior Based on Polystyrene-co-poly(N-isopropylacrylamide)/Poly(N-isopropylacrylamide) Core-Shell Nanoparticle.
    Jiang Y; Yan R; Pang B; Mi J; Zhang Y; Liu H; Xin J; Zhang Y; Li N; Zhao Y; Lin Q
    Macromol Rapid Commun; 2021 Jan; 42(2):e2000507. PubMed ID: 33210416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled and Local Delivery of Antibiotics by 3D Core/Shell Printed Hydrogel Scaffolds to Treat Soft Tissue Infections.
    Akkineni AR; Spangenberg J; Geissler M; Reichelt S; Buechner H; Lode A; Gelinsky M
    Pharmaceutics; 2021 Dec; 13(12):. PubMed ID: 34959430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium Deoxycholate Hydrogels: Effects of Modifications on Gelation, Drug Release, and Nanotemplating.
    McNeel KE; Das S; Siraj N; Negulescu II; Warner IM
    J Phys Chem B; 2015 Jul; 119(27):8651-9. PubMed ID: 26039574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium deoxycholate/TRIS-based hydrogels for multipurpose solute delivery vehicles: Ambient release, drug release, and enantiopreferential release.
    McNeel KE; Siraj N; Negulescu I; Warner IM
    Talanta; 2018 Jan; 177():66-73. PubMed ID: 29108584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic conceived pH sensitive core-shell particles for dual drug delivery.
    Khan IU; Stolch L; Serra CA; Anton N; Akasov R; Vandamme TF
    Int J Pharm; 2015 Jan; 478(1):78-87. PubMed ID: 25307961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual drug release from core-shell nanoparticles with distinct release profiles.
    Cao Y; Wang B; Wang Y; Lou D
    J Pharm Sci; 2014 Oct; 103(10):3205-16. PubMed ID: 25116645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual drug delivery collagen vehicles for modulation of skin fibrosis
    Coentro JQ; di Nubila A; May U; Prince S; Zwaagstra J; Järvinen TAH; Zeugolis DI
    Biomed Mater; 2022 Mar; 17(2):. PubMed ID: 35176732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustained Protein Release from a Core-Shell Drug Carrier System Comprised of Mesoporous Nanoparticles and an Injectable Hydrogel.
    Manavitehrani I; Fathi A; Schindeler A; Dehghani F
    Macromol Biosci; 2018 Dec; 18(12):e1800201. PubMed ID: 30395416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchically structured phase separated biopolymer hydrogels create tailorable delayed burst release during gastrointestinal digestion.
    Wooster TJ; Acquistapace S; Mettraux C; Donato L; Dekkers BL
    J Colloid Interface Sci; 2019 Oct; 553():308-319. PubMed ID: 31212230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-step fabrication of core-shell structured alginate-PLGA/PLLA microparticles as a novel drug delivery system for water soluble drugs.
    Lim MPA; Lee WL; Widjaja E; Loo SCJ
    Biomater Sci; 2013 May; 1(5):486-493. PubMed ID: 32482012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Core-shell designed scaffolds for drug delivery and tissue engineering.
    Perez RA; Kim HW
    Acta Biomater; 2015 Jul; 21():2-19. PubMed ID: 25792279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential core-shell designed scaffolds with a gelatin-based shell in achieving controllable release rates of proteins for tissue engineering approaches.
    Ghasemkhah F; Latifi M; Hadjizadeh A; Shokrgozar MA
    J Biomed Mater Res A; 2019 Jul; 107(7):1393-1405. PubMed ID: 30724475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ratiometric Thermometers Based on Rhodamine B and Fluorescein Dye-Incorporated (Nano) Cyclodextrin Metal-Organic Frameworks.
    Peng M; Kaczmarek AM; Van Hecke K
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14367-14379. PubMed ID: 35312274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel therapeutic core-shell hydrogel scaffolds with sequential delivery of cobalt and bone morphogenetic protein-2 for synergistic bone regeneration.
    Perez RA; Kim JH; Buitrago JO; Wall IB; Kim HW
    Acta Biomater; 2015 Sep; 23():295-308. PubMed ID: 26054564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Core-shell capsules based on supramolecular hydrogels show shell-related erosion and release due to confinement.
    Guo M; Cao X; Meijer EW; Dankers PY
    Macromol Biosci; 2013 Jan; 13(1):77-83. PubMed ID: 23208698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterned dual pH-responsive core-shell hydrogels with controllable swelling kinetics and volumes.
    Plunkett KN; Moore JS
    Langmuir; 2004 Aug; 20(16):6535-7. PubMed ID: 15274549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Core-shell designed scaffolds of alginate/alpha-tricalcium phosphate for the loading and delivery of biological proteins.
    Perez RA; Kim HW
    J Biomed Mater Res A; 2013 Apr; 101(4):1103-12. PubMed ID: 23015482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.