These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 35547744)

  • 41. CRISPR/Cas9 technology as a potent molecular tool for gene therapy.
    Karimian A; Azizian K; Parsian H; Rafieian S; Shafiei-Irannejad V; Kheyrollah M; Yousefi M; Majidinia M; Yousefi B
    J Cell Physiol; 2019 Aug; 234(8):12267-12277. PubMed ID: 30697727
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CRISPR-Cas9 for cancer therapy: Opportunities and challenges.
    Chen M; Mao A; Xu M; Weng Q; Mao J; Ji J
    Cancer Lett; 2019 Apr; 447():48-55. PubMed ID: 30684591
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Gene editing by CRISPR/Cas9 in the obligatory outcrossing Medicago sativa.
    Gao R; Feyissa BA; Croft M; Hannoufa A
    Planta; 2018 Apr; 247(4):1043-1050. PubMed ID: 29492697
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Applications of CRISPR-Cas9 Technology to Genome Editing in Glioblastoma Multiforme.
    Al-Sammarraie N; Ray SK
    Cells; 2021 Sep; 10(9):. PubMed ID: 34571991
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CRISPR-cas9 genome editing delivery systems for targeted cancer therapy.
    Ghaemi A; Bagheri E; Abnous K; Taghdisi SM; Ramezani M; Alibolandi M
    Life Sci; 2021 Feb; 267():118969. PubMed ID: 33385410
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modulating CRISPR/Cas9 genome-editing activity by small molecules.
    Chen S; Chen D; Liu B; Haisma HJ
    Drug Discov Today; 2022 Apr; 27(4):951-966. PubMed ID: 34823004
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The CRISPR/Cas9 system and its applications in crop genome editing.
    Bao A; Burritt DJ; Chen H; Zhou X; Cao D; Tran LP
    Crit Rev Biotechnol; 2019 May; 39(3):321-336. PubMed ID: 30646772
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Target Discovery for Precision Medicine Using High-Throughput Genome Engineering.
    Guo X; Chitale P; Sanjana NE
    Adv Exp Med Biol; 2017; 1016():123-145. PubMed ID: 29130157
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Current advances in overcoming obstacles of CRISPR/Cas9 off-target genome editing.
    Aquino-Jarquin G
    Mol Genet Metab; 2021; 134(1-2):77-86. PubMed ID: 34391646
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Can genetic engineering-based methods for gene function identification be eclipsed by genome editing in plants? A comparison of methodologies.
    Amritha PP; Shah JM
    Mol Genet Genomics; 2021 May; 296(3):485-500. PubMed ID: 33751237
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Functional genetic screening using CRISPR-Cas9 system].
    Li H; Huang C
    Sheng Wu Gong Cheng Xue Bao; 2018 Apr; 34(4):461-472. PubMed ID: 29701021
    [TBL] [Abstract][Full Text] [Related]  

  • 52. CRISPR/Cas9: an advanced tool for editing plant genomes.
    Samanta MK; Dey A; Gayen S
    Transgenic Res; 2016 Oct; 25(5):561-73. PubMed ID: 27012546
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CRISPR-Cas systems for genome editing of mammalian cells.
    Mani I; Arazoe T; Singh V
    Prog Mol Biol Transl Sci; 2021; 181():15-30. PubMed ID: 34127192
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CRISPR-Cas9-Mediated Genome Editing in the Filamentous Ascomycete Huntiella omanensis.
    Wilson AM; Wingfield BD
    J Vis Exp; 2020 Jun; (160):. PubMed ID: 32597846
    [TBL] [Abstract][Full Text] [Related]  

  • 55. New tools for old drugs: Functional genetic screens to optimize current chemotherapy.
    Gerhards NM; Rottenberg S
    Drug Resist Updat; 2018 Jan; 36():30-46. PubMed ID: 29499836
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Progress on genome-wide CRISPR/Cas9 screening for functional genes and regulatory elements.
    Liu SY; Yi GQ; Tang ZL; Chen B
    Yi Chuan; 2020 May; 42(5):435-443. PubMed ID: 32431295
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hacking the Cancer Genome: Profiling Therapeutically Actionable Long Non-coding RNAs Using CRISPR-Cas9 Screening.
    Esposito R; Bosch N; Lanzós A; Polidori T; Pulido-Quetglas C; Johnson R
    Cancer Cell; 2019 Apr; 35(4):545-557. PubMed ID: 30827888
    [TBL] [Abstract][Full Text] [Related]  

  • 58. CRISPR/Cas9 application in cancer therapy: a pioneering genome editing tool.
    Shojaei Baghini S; Gardanova ZR; Abadi SAH; Zaman BA; İlhan A; Shomali N; Adili A; Moghaddar R; Yaseri AF
    Cell Mol Biol Lett; 2022 May; 27(1):35. PubMed ID: 35508982
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity.
    Tadić V; Josipović G; Zoldoš V; Vojta A
    Methods; 2019 Jul; 164-165():109-119. PubMed ID: 31071448
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice.
    Hu X; Meng X; Liu Q; Li J; Wang K
    Plant Biotechnol J; 2018 Jan; 16(1):292-297. PubMed ID: 28605576
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.