BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 35547978)

  • 1. Porous sorbents for the capture of radioactive iodine compounds: a review.
    Huve J; Ryzhikov A; Nouali H; Lalia V; Augé G; Daou TJ
    RSC Adv; 2018 Aug; 8(51):29248-29273. PubMed ID: 35547978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pitch-based porous polymer beads for highly efficient iodine capture.
    Chen G; Zhao Q; Wang Z; Jiang M; Zhang L; Duan T; Zhu L
    J Hazard Mater; 2022 Jul; 434():128859. PubMed ID: 35405608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porous organic materials for iodine adsorption.
    Kurisingal JF; Yun H; Hong CS
    J Hazard Mater; 2023 Sep; 458():131835. PubMed ID: 37348374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lead-vanadate sorbents for iodine trapping and their conversion into an iodoapatite-based conditioning matrix.
    Pénélope R; Campayo L; Fournier M; Le Gallet S; Gossard A; Grandjean A
    Front Chem; 2022; 10():1085868. PubMed ID: 36618862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient and simultaneous capture of iodine and methyl iodide achieved by a covalent organic framework.
    Xie Y; Pan T; Lei Q; Chen C; Dong X; Yuan Y; Maksoud WA; Zhao L; Cavallo L; Pinnau I; Han Y
    Nat Commun; 2022 May; 13(1):2878. PubMed ID: 35610232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chalcogen-based aerogels as sorbents for radionuclide remediation.
    Riley BJ; Chun J; Um W; Lepry WC; Matyas J; Olszta MJ; Li X; Polychronopoulou K; Kanatzidis MG
    Environ Sci Technol; 2013 Jul; 47(13):7540-7. PubMed ID: 23763706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential of metal-organic frameworks for separation of xenon and krypton.
    Banerjee D; Cairns AJ; Liu J; Motkuri RK; Nune SK; Fernandez CA; Krishna R; Strachan DM; Thallapally PK
    Acc Chem Res; 2015 Feb; 48(2):211-9. PubMed ID: 25479165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-organic frameworks as superior porous adsorbents for radionuclide sequestration: Current status and perspectives.
    Patra K; Ansari SA; Mohapatra PK
    J Chromatogr A; 2021 Oct; 1655():462491. PubMed ID: 34482010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abatement of radioiodine in aqueous reprocessing off-gas.
    Greaney AT; Ngelale RO; Bruffey SH; Martin LR
    Front Chem; 2022; 10():1078668. PubMed ID: 36712985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functionalized metal organic frameworks for effective capture of radioactive organic iodides.
    Li B; Dong X; Wang H; Ma D; Tan K; Shi Z; Chabal YJ; Han Y; Li J
    Faraday Discuss; 2017 Sep; 201():47-61. PubMed ID: 28654114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid, high-capacity adsorption of iodine from aqueous environments with amide functionalized covalent organic frameworks.
    Arora N; Debnath T; Senarathna MC; Johnson RM; Roske IG; Cisneros GA; Smaldone RA
    Chem Sci; 2024 Mar; 15(10):3571-3577. PubMed ID: 38455001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous ZIF-8@polyacrylonitrile composite beads for iodine capture.
    Yu Q; Jiang X; Cheng Z; Liao Y; Duan M
    RSC Adv; 2021 Sep; 11(48):30259-30269. PubMed ID: 35480247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cationic Nonporous Macrocyclic Organic Compounds for Multimedia Iodine Capture.
    Xu XQ; Cao LH; Yang Y; Bai XT; Zhao F; He ZH; Yin Z; Ma YM
    Chem Asian J; 2021 Jan; 16(2):142-146. PubMed ID: 33305903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of NO
    Baskaran K; Elliott C; Ali M; Moon J; Beland J; Cohrs D; Chong S; Riley BJ; Chidambaram D; Carlson K
    J Hazard Mater; 2023 Mar; 446():130644. PubMed ID: 36587601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps.
    Li B; Dong X; Wang H; Ma D; Tan K; Jensen S; Deibert BJ; Butler J; Cure J; Shi Z; Thonhauser T; Chabal YJ; Han Y; Li J
    Nat Commun; 2017 Sep; 8(1):485. PubMed ID: 28883637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid iodine capture from radioactive wastewater by green and low-cost biomass waste derived porous silicon-carbon composite.
    Qu G; Han Y; Qi J; Xing X; Hou M; Sun Y; Wang X; Sun G
    RSC Adv; 2021 Jan; 11(9):5268-5275. PubMed ID: 35424433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction process between gaseous CH
    Houjeij H; Gregoire AC; Le Bourdon G; Cantrel L; Sobanska S
    Environ Sci Process Impacts; 2021 Nov; 23(11):1771-1781. PubMed ID: 34612297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porous Silsesquioxane-Imine Frameworks as Highly Efficient Adsorbents for Cooperative Iodine Capture.
    Janeta M; Bury W; Szafert S
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19964-19973. PubMed ID: 29788716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts.
    Steinhauser G; Brandl A; Johnson TE
    Sci Total Environ; 2014 Feb; 470-471():800-17. PubMed ID: 24189103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radioactive iodine capture in silver-containing mordenites through nanoscale silver iodide formation.
    Chapman KW; Chupas PJ; Nenoff TM
    J Am Chem Soc; 2010 Jul; 132(26):8897-9. PubMed ID: 20550110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.