BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35547983)

  • 1. A guanidyl-functionalized TiO
    Liu H; Lian B
    RSC Adv; 2018 Aug; 8(51):29476-29481. PubMed ID: 35547983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrophilic modification of titania nanomaterials as a biofunctional adsorbent for selective enrichment of phosphopeptides.
    Liu H; Yang T; Dai J; Zhu J; Li X; Wen R; Yang X
    Analyst; 2015 Oct; 140(19):6652-9. PubMed ID: 26299437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and synthesis of an immobilized metal affinity chromatography and metal oxide affinity chromatography hybrid material for improved phosphopeptide enrichment.
    Yang DS; Ding XY; Min HP; Li B; Su MX; Niu MM; Di B; Yan F
    J Chromatogr A; 2017 Jul; 1505():56-62. PubMed ID: 28533032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel molybdenum disulfide nanosheet loaded Titanium/Zirconium bimetal oxide affinity probe for efficient enrichment of phosphopeptides in A549 cells.
    Ma ZQ; Wang YH; Peng Y; Guo X; Meng Z
    J Chromatogr B Analyt Technol Biomed Life Sci; 2022 May; 1199():123235. PubMed ID: 35447520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly selective enrichment of phosphopeptides using Zr
    Dai J; Wang M; Liu H
    Talanta; 2017 Mar; 164():222-227. PubMed ID: 28107921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designed synthesis of Graphene @titania @mesoporous silica hybrid material as size-exclusive metal oxide affinity chromatography platform for selective enrichment of endogenous phosphopeptides.
    Yao J; Sun N; Deng C; Zhang X
    Talanta; 2016 Apr; 150():296-301. PubMed ID: 26838411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of a metal oxide affinity chromatography magnetic mesoporous nanomaterial and development of a one-step selective phosphopeptide enrichment strategy for analysis of phosphorylated proteins.
    Gao L; Tao J; Qi L; Jiang X; Shi H; Liu Y; Di B; Wang Y; Yan F
    Anal Chim Acta; 2022 Feb; 1195():339430. PubMed ID: 35090649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new Ti-based IMAC nanohybrid with high hydrophilicity and enhanced absorption capacity for the selective enrichment of phosphopeptides.
    Wang X; Yu J; Yang H; Shen J; Liu H; Zhou J
    J Chromatogr B Analyt Technol Biomed Life Sci; 2021 Aug; 1179():122851. PubMed ID: 34246169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of guanidyl-functionalized magnetic covalent organic framework for highly selective capture of endogenous phosphopeptides.
    Luo B; Yu L; He J; Li Z; Lan F; Wu Y
    J Chromatogr B Analyt Technol Biomed Life Sci; 2020 May; 1145():122080. PubMed ID: 32304948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust Dual-Biomimetic Titanium Dioxide-Cellulose Monolith for Enrichment of Phosphopeptides.
    Zhang L; Wang Y; Zhang W; Hsu YI; Asoh TA; Qi B; Uyama H
    ACS Biomater Sci Eng; 2022 Jun; 8(6):2676-2683. PubMed ID: 35616239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile preparation of molybdenum (VI) oxide - Modified graphene oxide nanocomposite for specific enrichment of phosphopeptides.
    Sun H; Zhang Q; Zhang L; Zhang W; Zhang L
    J Chromatogr A; 2017 Oct; 1521():36-43. PubMed ID: 28947203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ synthesis of a novel metal oxide affinity chromatography affinity probe for the selective enrichment of low-abundance phosphopeptides.
    Wang B; Wu H; Yan Y; Tang K; Ding CF
    Rapid Commun Mass Spectrom; 2020 Oct; 34(20):e8881. PubMed ID: 32638431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel rGR-TiO
    Huang X; Wang J; Liu C; Guo T; Wang S
    J Mater Chem B; 2015 Mar; 3(12):2505-2515. PubMed ID: 32262125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amine-functionalized TiO₂ nanoparticles for highly selective enrichment of phosphopeptides.
    Liu H; Zhou J; Huang H
    Talanta; 2015 Oct; 143():431-437. PubMed ID: 26078180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epitaxial Growth of Guanidyl-Functionalized Magnetic Metal-Organic Frameworks with Multiaffinity Sites for Selective Capture of Global Phosphopeptides.
    Zhang N; Huang T; Xie P; Yang Z; Zhang L; Wu X; Cai Z
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):39364-39374. PubMed ID: 35993677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic guanidyl-functionalized covalent organic framework composite: a platform for specific capture and isolation of phosphopeptides and exosomes.
    Wang B; Wang B; Feng Q; Fang X; Dai X; Yan Y; Ding CF
    Mikrochim Acta; 2022 Aug; 189(9):330. PubMed ID: 35969309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile synthesis of guanidyl-functionalized magnetic polymer microspheres for tunable and specific capture of global phosphopeptides or only multiphosphopeptides.
    Xiong Z; Chen Y; Zhang L; Ren J; Zhang Q; Ye M; Zhang W; Zou H
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22743-50. PubMed ID: 25466400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile Preparation of Core-Shell Magnetic Metal-Organic Framework Nanoparticles for the Selective Capture of Phosphopeptides.
    Chen Y; Xiong Z; Peng L; Gan Y; Zhao Y; Shen J; Qian J; Zhang L; Zhang W
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16338-47. PubMed ID: 26156207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycocyamine functionalized magnetic layered double hydroxides with multiple affinity sites for trace phosphopeptides enrichment.
    Jiang D; Duan L; Jia Q; Liu J
    Anal Chim Acta; 2020 Nov; 1136():25-33. PubMed ID: 33081946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GO-META-TiO
    Zhao S; Wang S; Yan Y; Wang L; Guo G; Wang X
    Talanta; 2019 Jan; 192():360-367. PubMed ID: 30348403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.