BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35548051)

  • 1. Comparative Study on Jejunal Immunity and Microbial Composition of Growing-Period Tibetan Pigs and Duroc × (Landrace × Yorkshire) Pigs.
    Yang Y; Li Y; Xie Y; Qiao S; Yang L; Pan H
    Front Vet Sci; 2022; 9():890585. PubMed ID: 35548051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Analysis of Structural Composition and Function of Intestinal Microbiota between Chinese Indigenous Laiwu Pigs and Commercial DLY Pigs.
    Li C; Zhao X; Zhao G; Xue H; Wang Y; Ren Y; Li J; Wang H; Wang J; Song Q
    Vet Sci; 2023 Aug; 10(8):. PubMed ID: 37624311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intestinal microbiota could transfer host Gut characteristics from pigs to mice.
    Diao H; Yan HL; Xiao Y; Yu B; Yu J; He J; Zheng P; Zeng BH; Wei H; Mao XB; Chen DW
    BMC Microbiol; 2016 Oct; 16(1):238. PubMed ID: 27729007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Analysis of Intestinal Inflammation and Microbiota Dysbiosis of LPS-Challenged Piglets between Different Breeds.
    Li C; Wang Y; Zhao X; Li J; Wang H; Ren Y; Sun H; Zhu X; Song Q; Wang J
    Animals (Basel); 2024 Feb; 14(5):. PubMed ID: 38473050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and discrimination of Tibetan and Duroc × (Landrace × Yorkshire) pork using label-free quantitative proteomics analysis.
    Mi S; Li X; Zhang CH; Liu JQ; Huang DQ
    Food Res Int; 2019 May; 119():426-435. PubMed ID: 30884673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Obese Ningxiang pig-derived microbiota rewires carnitine metabolism to promote muscle fatty acid deposition in lean DLY pigs.
    Yin J; Li Y; Tian Y; Zhou F; Ma J; Xia S; Yang T; Ma L; Zeng Q; Liu G; Yin Y; Huang X
    Innovation (Camb); 2023 Sep; 4(5):100486. PubMed ID: 37636278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the Fecal Microbial Composition and Metagenomic Functional Capacities Associated With Feed Efficiency in Commercial DLY Pigs.
    Quan J; Cai G; Yang M; Zeng Z; Ding R; Wang X; Zhuang Z; Zhou S; Li S; Yang H; Li Z; Zheng E; Huang W; Yang J; Wu Z
    Front Microbiol; 2019; 10():52. PubMed ID: 30761104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gut microbial profiles and the role in lipid metabolism in Shaziling pigs.
    Ma J; Duan Y; Li R; Liang X; Li T; Huang X; Yin Y; Yin J
    Anim Nutr; 2022 Jun; 9():345-356. PubMed ID: 35600540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gut microbiota-derived 3-phenylpropionic acid promotes intestinal epithelial barrier function via AhR signaling.
    Hu J; Chen J; Xu X; Hou Q; Ren J; Yan X
    Microbiome; 2023 May; 11(1):102. PubMed ID: 37158970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Healthy Gut Microbiome Composition Enhances Disease Resistance and Fat Deposition in Tibetan Pigs.
    Shang P; Wei M; Duan M; Yan F; Chamba Y
    Front Microbiol; 2022; 13():965292. PubMed ID: 35928149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive Multi-Omic Evaluation of the Microbiota and Metabolites in the Colons of Diverse Swine Breeds.
    Zhu Y; Sun G; Cidan Y; Shi B; Tan Z; Zhang J; Basang W
    Animals (Basel); 2024 Apr; 14(8):. PubMed ID: 38672368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of mucosal immunity to Mycoplasma hyopneumoniae in Jiangquhai porcine lean strain and DLY piglets.
    Hua LZ; Wu YZ; Bai FF; William KK; Feng ZX; Liu MJ; Yao JT; Zhang X; Shao GQ
    Genet Mol Res; 2014 Jul; 13(3):5199-206. PubMed ID: 25061745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metagenomic Characterization of Intestinal Regions in Pigs With Contrasting Feed Efficiency.
    Quan J; Wu Z; Ye Y; Peng L; Wu J; Ruan D; Qiu Y; Ding R; Wang X; Zheng E; Cai G; Huang W; Yang J
    Front Microbiol; 2020; 11():32. PubMed ID: 32038603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gut Bacterial Composition and Functional Potential of Tibetan Pigs Under Semi-Grazing.
    Niu H; Feng XZ; Shi CW; Zhang D; Chen HL; Huang HB; Jiang YL; Wang JZ; Cao X; Wang N; Zeng Y; Yang GL; Yang WT; Wang CF
    Front Microbiol; 2022; 13():850687. PubMed ID: 35464912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of intestine development by fecal microbiota transplantation in suckling pigs.
    Diao H; Yan HL; Xiao Y; Yu B; Zheng P; He J; Yu J; Mao XB; Chen DW
    RSC Adv; 2018 Feb; 8(16):8709-8720. PubMed ID: 35539874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trans-Species Fecal Transplant Revealed the Role of the Gut Microbiome as a Contributor to Energy Metabolism and Development of Skeletal Muscle.
    Cai L; Li M; Zhou S; Zhu X; Zhang X; Xu Q
    Metabolites; 2022 Aug; 12(8):. PubMed ID: 36005641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated analysis of multi-tissues lipidome and gut microbiome reveals microbiota-induced shifts on lipid metabolism in pigs.
    Xie C; Zhu X; Xu B; Niu Y; Zhang X; Ma L; Yan X
    Anim Nutr; 2022 Sep; 10():280-293. PubMed ID: 35785254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative biogeography of the gut microbiome between Jinhua and Landrace pigs.
    Xiao Y; Kong F; Xiang Y; Zhou W; Wang J; Yang H; Zhang G; Zhao J
    Sci Rep; 2018 Apr; 8(1):5985. PubMed ID: 29654314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative evaluation of the fecal microbiota of adult hybrid pigs and Tibetan pigs, and dynamic changes in the fecal microbiota of hybrid pigs.
    He H; Gou Y; Zeng B; Wang R; Yang J; Wang K; Jing Y; Yang Y; Liang Y; Yang Y; Lv X; He Z; Tang Q; Gu Y
    Front Immunol; 2023; 14():1329590. PubMed ID: 38155960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Host-microbiota interaction-mediated resistance to inflammatory bowel disease in pigs.
    Zhao X; Jiang L; Fang X; Guo Z; Wang X; Shi B; Meng Q
    Microbiome; 2022 Jul; 10(1):115. PubMed ID: 35907917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.