BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 35548196)

  • 1. Thermal transport characterization of carbon and silicon doped stanene nanoribbon: an equilibrium molecular dynamics study.
    Navid IA; Subrina S
    RSC Adv; 2018 Sep; 8(55):31690-31699. PubMed ID: 35548196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal transport characterization of stanene/silicene heterobilayer and stanene bilayer nanostructures.
    Noshin M; Khan AI; Subrina S
    Nanotechnology; 2018 May; 29(18):185706. PubMed ID: 29438099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical characterization of thermal transport in hexagonal tungsten disulfide (WS
    Ghosh A; Ahmed SS; Shawkat MSA; Subrina S
    Nanotechnology; 2024 Jun; ():. PubMed ID: 38906122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusive nature of thermal transport in stanene.
    Nissimagoudar AS; Manjanath A; Singh AK
    Phys Chem Chem Phys; 2016 May; 18(21):14257-63. PubMed ID: 27169141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lateral and flexural thermal transport in stanene/2D-SiC van der Waals heterostructure.
    Ahammed S; Islam MS; Mia I; Park J
    Nanotechnology; 2020 Dec; 31(50):505702. PubMed ID: 33006320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phonon thermal conductivity of the stanene/hBN van der Waals heterostructure.
    Rahman MH; Islam MS; Islam MS; Chowdhury EH; Bose P; Jayan R; Islam MM
    Phys Chem Chem Phys; 2021 May; 23(18):11028-11038. PubMed ID: 33942827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lateral and flexural phonon thermal transport in graphene and stanene bilayers.
    Hong Y; Zhu C; Ju M; Zhang J; Zeng XC
    Phys Chem Chem Phys; 2017 Mar; 19(9):6554-6562. PubMed ID: 28197566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab Initio-Based Bond Order Potential to Investigate Low Thermal Conductivity of Stanene Nanostructures.
    Cherukara MJ; Narayanan B; Kinaci A; Sasikumar K; Gray SK; Chan MK; Sankaranarayanan SK
    J Phys Chem Lett; 2016 Oct; 7(19):3752-3759. PubMed ID: 27569053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low lattice thermal conductivity of stanene.
    Peng B; Zhang H; Shao H; Xu Y; Zhang X; Zhu H
    Sci Rep; 2016 Feb; 6():20225. PubMed ID: 26838731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Band gap opening in stanene induced by patterned B-N doping.
    Garg P; Choudhuri I; Mahata A; Pathak B
    Phys Chem Chem Phys; 2017 Feb; 19(5):3660-3669. PubMed ID: 28094366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tensile strains give rise to strong size effects for thermal conductivities of silicene, germanene and stanene.
    Kuang YD; Lindsay L; Shi SQ; Zheng GP
    Nanoscale; 2016 Feb; 8(6):3760-7. PubMed ID: 26815838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the lattice thermal conductivity of Sb
    Zhang P; Liao W; Zhu Z; Qin M; Zhang Z; Jin D; Liu Y; Wang Z; Lu Z; Xiong R
    Phys Chem Chem Phys; 2023 Jun; 25(22):15422-15432. PubMed ID: 37248727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermoelectric Properties of Bi₂Te₃: CuI and the Effect of Its Doping with Pb Atoms.
    Han MK; Jin Y; Lee DH; Kim SJ
    Materials (Basel); 2017 Oct; 10(11):. PubMed ID: 29072613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Molecular Dynamics Simulation Study of In- and Cross-Plane Thermal Conductivity of Bilayer Graphene.
    Mohammadi R; Ghaderi MR; Hajian E
    Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Realizing High Thermoelectric Performance in Sb-Doped Ag
    Zhu T; Bai H; Zhang J; Tan G; Yan Y; Liu W; Su X; Wu J; Zhang Q; Tang X
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39425-39433. PubMed ID: 32805902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of the thermoelectric properties of lead selenide doped with boron, gallium, indium, or thallium.
    Zhang Q; Cao F; Lukas K; Liu W; Esfarjani K; Opeil C; Broido D; Parker D; Singh DJ; Chen G; Ren Z
    J Am Chem Soc; 2012 Oct; 134(42):17731-8. PubMed ID: 23025440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal transport in multilayer silicon carbide nanoribbons: reverse non-equilibrium molecular dynamics.
    Zanane FZ; Drissi LB; Saidi EH; Bousmina M; Fehri OF
    Phys Chem Chem Phys; 2024 Feb; 26(6):5414-5428. PubMed ID: 38275005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vertical Silicon Nanowire Thermoelectric Modules with Enhanced Thermoelectric Properties.
    Lee S; Kim K; Kang DH; Meyyappan M; Baek CK
    Nano Lett; 2019 Feb; 19(2):747-755. PubMed ID: 30636421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Substitutional Pb Doping on Bipolar and Lattice Thermal Conductivity in p-Type Bi
    Kim HS; Lee KH; Yoo J; Youn J; Roh JW; Kim SI; Kim SW
    Materials (Basel); 2017 Jul; 10(7):. PubMed ID: 28773118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boosting High Thermoelectric Performance of Ni-Doped Cu
    Shen F; Zheng Y; Miao L; Liu C; Gao J; Wang X; Liu P; Yoshida K; Cai H
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8385-8391. PubMed ID: 31909970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.