BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 35548314)

  • 1. Expanding the Editing Window of Cytidine Base Editors With the Rad51 DNA-Binding Domain in Rice.
    Wei C; Liu H; Wang W; Luo P; Chen Q; Li R; Wang C; Botella JR; Zhang H
    Front Plant Sci; 2022; 13():865848. PubMed ID: 35548314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PhieABEs: a PAM-less/free high-efficiency adenine base editor toolbox with wide target scope in plants.
    Tan J; Zeng D; Zhao Y; Wang Y; Liu T; Li S; Xue Y; Luo Y; Xie X; Chen L; Liu YG; Zhu Q
    Plant Biotechnol J; 2022 May; 20(5):934-943. PubMed ID: 34984801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing the efficiency and targeting range of cytidine base editors through fusion of a single-stranded DNA-binding protein domain.
    Zhang X; Chen L; Zhu B; Wang L; Chen C; Hong M; Huang Y; Li H; Han H; Cai B; Yu W; Yin S; Yang L; Yang Z; Liu M; Zhang Y; Mao Z; Wu Y; Liu M; Li D
    Nat Cell Biol; 2020 Jun; 22(6):740-750. PubMed ID: 32393889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring C-to-G and A-to-Y Base Editing in Rice by Using New Vector Tools.
    Zeng D; Zheng Z; Liu Y; Liu T; Li T; Liu J; Luo Q; Xue Y; Li S; Chai N; Yu S; Xie X; Liu YG; Zhu Q
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome editing with type II-C CRISPR-Cas9 systems from Neisseria meningitidis in rice.
    Xu R; Qin R; Xie H; Li J; Liu X; Zhu M; Sun Y; Yu Y; Lu P; Wei P
    Plant Biotechnol J; 2022 Feb; 20(2):350-359. PubMed ID: 34582079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two Compact Cas9 Ortholog-Based Cytosine Base Editors Expand the DNA Targeting Scope and Applications
    Wu S; Li L; Li M; Sun S; Zhao Y; Xue X; Chen F; Zhong J; Guo J; Qu Q; Wang X; Liu Z; Qiao Y
    Front Cell Dev Biol; 2022; 10():809922. PubMed ID: 35300420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing Cytosine Base Editing Scope and Efficiency With Engineered Cas9-PmCDA1 Fusions and the Modified sgRNA in Rice.
    Wu Y; Xu W; Wang F; Zhao S; Feng F; Song J; Zhang C; Yang J
    Front Genet; 2019; 10():379. PubMed ID: 31134125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Base editing in rice: current progress, advances, limitations, and future perspectives.
    Yarra R; Sahoo L
    Plant Cell Rep; 2021 Apr; 40(4):595-604. PubMed ID: 33423074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compact zinc finger architecture utilizing toxin-derived cytidine deaminases for highly efficient base editing in human cells.
    Fauser F; Kadam BN; Arangundy-Franklin S; Davis JE; Vaidya V; Schmidt NJ; Lew G; Xia DF; Mureli R; Ng C; Zhou Y; Scarlott NA; Eshleman J; BendaƱa YR; Shivak DA; Reik A; Li P; Davis GD; Miller JC
    Nat Commun; 2024 Feb; 15(1):1181. PubMed ID: 38360922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of base editors with anti-deaminases derived from viruses.
    Liu Z; Chen S; Lai L; Li Z
    Nat Commun; 2022 Feb; 13(1):597. PubMed ID: 35105899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Internally inlaid SaCas9 base editors enable window specific base editing.
    Jiang L; Long J; Yang Y; Zhou L; Su J; Qin F; Tang W; Tao R; Chen Q; Yao S
    Theranostics; 2022; 12(10):4767-4778. PubMed ID: 35832085
    [No Abstract]   [Full Text] [Related]  

  • 12. Expanding C-T base editing toolkit with diversified cytidine deaminases.
    Cheng TL; Li S; Yuan B; Wang X; Zhou W; Qiu Z
    Nat Commun; 2019 Aug; 10(1):3612. PubMed ID: 31399578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous evolution of base editors with expanded target compatibility and improved activity.
    Thuronyi BW; Koblan LW; Levy JM; Yeh WH; Zheng C; Newby GA; Wilson C; Bhaumik M; Shubina-Oleinik O; Holt JR; Liu DR
    Nat Biotechnol; 2019 Sep; 37(9):1070-1079. PubMed ID: 31332326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Editing Properties of Base Editors with SpCas9-NG in Discarded Human Tripronuclear Zygotes.
    Liu X; Zhou X; Li G; Huang S; Sun W; Sun Q; Li L; Huang X; Liu J; Wang L
    CRISPR J; 2021 Oct; 4(5):710-727. PubMed ID: 34661426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient base editing by RNA-guided cytidine base editors (CBEs) in pigs.
    Yuan H; Yu T; Wang L; Yang L; Zhang Y; Liu H; Li M; Tang X; Liu Z; Li Z; Lu C; Chen X; Pang D; Ouyang H
    Cell Mol Life Sci; 2020 Feb; 77(4):719-733. PubMed ID: 31302752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly efficient base editing with expanded targeting scope using SpCas9-NG in rabbits.
    Liu Z; Shan H; Chen S; Chen M; Song Y; Lai L; Li Z
    FASEB J; 2020 Jan; 34(1):588-596. PubMed ID: 31914687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decreasing predictable DNA off-target effects and narrowing editing windows of adenine base editors by fusing human Rad18 protein variant.
    Wang Z; Yuan H; Yang L; Ma L; Zhang Y; Deng J; Li X; Xiao W; Li Z; Qiu J; Ouyang H; Pang D
    Int J Biol Macromol; 2023 Dec; 253(Pt 7):127418. PubMed ID: 37848112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction.
    Koblan LW; Doman JL; Wilson C; Levy JM; Tay T; Newby GA; Maianti JP; Raguram A; Liu DR
    Nat Biotechnol; 2018 Oct; 36(9):843-846. PubMed ID: 29813047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient single base editing in Aspergillus niger with CRISPR/Cas9 cytidine deaminase fusion.
    Huang L; Dong H; Zheng J; Wang B; Pan L
    Microbiol Res; 2019; 223-225():44-50. PubMed ID: 31178050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Replacing the
    Villiger L; Schmidheini L; Mathis N; Rothgangl T; Marquart K; Schwank G
    Mol Ther Nucleic Acids; 2021 Dec; 26():502-510. PubMed ID: 34631280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.