These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35548635)

  • 1. Simulation before fabrication: a case study on the utilization of simulators for the design of droplet microfluidic networks.
    Grimmer A; Chen X; Hamidović M; Haselmayr W; Ren CL; Wille R
    RSC Adv; 2018 Oct; 8(60):34733-34742. PubMed ID: 35548635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pillar-induced droplet merging in microfluidic circuits.
    Niu X; Gulati S; Edel JB; deMello AJ
    Lab Chip; 2008 Nov; 8(11):1837-41. PubMed ID: 18941682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic on-demand droplet generation, storage, retrieval, and merging for single-cell pairing.
    Babahosseini H; Misteli T; DeVoe DL
    Lab Chip; 2019 Jan; 19(3):493-502. PubMed ID: 30623951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of droplet traffic in interconnected microfluidic ladder devices.
    Song K; Zhang L; Hu G
    Electrophoresis; 2012 Feb; 33(3):411-8. PubMed ID: 22228275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active or Passive On-Demand Droplet Merging in a Microfluidic Valve-Based Trap.
    Babahosseini H; Misteli T; DeVoe DL
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5350-5353. PubMed ID: 30441545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic Device for Droplet Pairing by Combining Droplet Railing and Floating Trap Arrays.
    Duchamp M; Arnaud M; Bobisse S; Coukos G; Harari A; Renaud P
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic droplet trapping, splitting and merging with feedback controls and state space modelling.
    Wong D; Ren CL
    Lab Chip; 2016 Aug; 16(17):3317-29. PubMed ID: 27435753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated droplet-digital microfluidic system for on-demand droplet creation, mixing, incubation, and sorting.
    Ahmadi F; Samlali K; Vo PQN; Shih SCC
    Lab Chip; 2019 Jan; 19(3):524-535. PubMed ID: 30633267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Meander Designer: Automatically Generating Meander Channel Designs.
    Grimmer A; Frank P; Ebner P; Häfner S; Richter A; Wille R
    Micromachines (Basel); 2018 Nov; 9(12):. PubMed ID: 30486446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behavior of a train of droplets in a fluidic network with hydrodynamic traps.
    Bithi SS; Vanapalli SA
    Biomicrofluidics; 2010 Dec; 4(4):44110. PubMed ID: 21264057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pumping of electrolyte with mobile liquid metal droplets driven by continuous electrowetting: A full-scaled simulation study considering surface-coupled electrocapillary two-phase flow.
    Liu W; Tao Y; Ge Z; Zhou J; Xu R; Ren Y
    Electrophoresis; 2021 Apr; 42(7-8):950-966. PubMed ID: 33119900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic-based processors and circuits design.
    Azizbeigi K; Zamani Pedram M; Sanati-Nezhad A
    Sci Rep; 2021 May; 11(1):10985. PubMed ID: 34040102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated Droplet-Based Microfluidic Platform for Multiplexed Analysis of Biochemical Markers in Small Volumes.
    Cedillo-Alcantar DF; Han YD; Choi J; Garcia-Cordero JL; Revzin A
    Anal Chem; 2019 Apr; 91(8):5133-5141. PubMed ID: 30834743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On demand nanoliter-scale microfluidic droplet generation, injection, and mixing using a passive microfluidic device.
    Tangen U; Sharma A; Wagler P; McCaskill JS
    Biomicrofluidics; 2015 Jan; 9(1):014119. PubMed ID: 25759752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agent-based simulations of complex droplet pattern formation in a two-branch microfluidic network.
    Smith BJ; Gaver DP
    Lab Chip; 2010 Feb; 10(3):303-12. PubMed ID: 20091001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical assessments of droplet contents in microfluidic channels. Application to the titration of heterogeneous droplets.
    Delahaye T; Lombardo T; Sella C; Thouin L
    Anal Chim Acta; 2021 Apr; 1155():338344. PubMed ID: 33766324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing droplet transition capabilities using sloped microfluidic channel geometry for stable droplet operation.
    Wippold JA; Huang C; Stratis-Cullum D; Han A
    Biomed Microdevices; 2020 Jan; 22(1):15. PubMed ID: 31965327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Floating Droplet Array: An Ultrahigh-Throughput Device for Droplet Trapping, Real-time Analysis and Recovery.
    Labanieh L; Nguyen TN; Zhao W; Kang DK
    Micromachines (Basel); 2015 Oct; 6(10):1469-1482. PubMed ID: 27134760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated microfluidic system capable of size-specific droplet generation with size-dependent droplet separation.
    Lee S; Hong SJ; Yoo HJ; Ahn JH; Cho DI
    J Biomed Nanotechnol; 2013 Jun; 9(6):944-8. PubMed ID: 23858958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.