These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35548781)

  • 21. A Randomized Controlled Trial of EEG-Based Motor Imagery Brain-Computer Interface Robotic Rehabilitation for Stroke.
    Ang KK; Chua KS; Phua KS; Wang C; Chin ZY; Kuah CW; Low W; Guan C
    Clin EEG Neurosci; 2015 Oct; 46(4):310-20. PubMed ID: 24756025
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Denoising Algorithm for Event-Related Desynchronization-Based Motor Intention Recognition in Robot-assisted Stroke Rehabilitation Training with Brain-Machine Interaction.
    Jia T; Liu K; Qian C; Li C; Ji L
    J Neurosci Methods; 2020 Dec; 346():108909. PubMed ID: 32810473
    [TBL] [Abstract][Full Text] [Related]  

  • 23. EEG feature fusion for motor imagery: A new robust framework towards stroke patients rehabilitation.
    Al-Qazzaz NK; Alyasseri ZAA; Abdulkareem KH; Ali NS; Al-Mhiqani MN; Guger C
    Comput Biol Med; 2021 Oct; 137():104799. PubMed ID: 34478922
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Myoelectrically controlled wrist robot for stroke rehabilitation.
    Song R; Tong KY; Hu X; Zhou W
    J Neuroeng Rehabil; 2013 Jun; 10():52. PubMed ID: 23758925
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An exploration of EEG features during recovery following stroke - implications for BCI-mediated neurorehabilitation therapy.
    Leamy DJ; Kocijan J; Domijan K; Duffin J; Roche RA; Commins S; Collins R; Ward TE
    J Neuroeng Rehabil; 2014 Jan; 11():9. PubMed ID: 24468185
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Error-related potentials during continuous feedback: using EEG to detect errors of different type and severity.
    Spüler M; Niethammer C
    Front Hum Neurosci; 2015; 9():155. PubMed ID: 25859204
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An Optimal Transport Based Transferable System for Detection of Erroneous Somato-Sensory Feedback from Neural Signals.
    Bhattacharyya S; Hayashibe M
    Brain Sci; 2021 Oct; 11(11):. PubMed ID: 34827392
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-Trial Classification of Error-Related Potentials in People with Motor Disabilities: A Study in Cerebral Palsy, Stroke, and Amputees.
    Usama N; Niazi IK; Dremstrup K; Jochumsen M
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214576
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Brain-computer interface in stroke: a review of progress.
    Silvoni S; Ramos-Murguialday A; Cavinato M; Volpato C; Cisotto G; Turolla A; Piccione F; Birbaumer N
    Clin EEG Neurosci; 2011 Oct; 42(4):245-52. PubMed ID: 22208122
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On Error-Related Potentials During Sensorimotor-Based Brain-Computer Interface: Explorations With a Pseudo-Online Brain-Controlled Speller.
    Bevilacqua M; Perdikis S; Millan JDR
    IEEE Open J Eng Med Biol; 2020; 1():17-22. PubMed ID: 35402943
    [No Abstract]   [Full Text] [Related]  

  • 31. Is motor-imagery brain-computer interface feasible in stroke rehabilitation?
    Teo WP; Chew E
    PM R; 2014 Aug; 6(8):723-8. PubMed ID: 24429072
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Brain-Computer Interface Channel-Selection Strategy Based on Analysis of Event-Related Desynchronization Topography in Stroke Patients.
    Li C; Jia T; Xu Q; Ji L; Pan Y
    J Healthc Eng; 2019; 2019():3817124. PubMed ID: 31559004
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adding Tactile Feedback and Changing ISI to Improve BCI Systems' Robustness: An Error-Related Potential Study.
    Ahkami B; Ghassemi F
    Brain Topogr; 2021 Jul; 34(4):467-477. PubMed ID: 33909193
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Generic Transferable EEG Decoder for Online Detection of Error Potential in Target Selection.
    Bhattacharyya S; Konar A; Tibarewala DN; Hayashibe M
    Front Neurosci; 2017; 11():226. PubMed ID: 28512396
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment-driven selection and adaptation of exercise difficulty in robot-assisted therapy: a pilot study with a hand rehabilitation robot.
    Metzger JC; Lambercy O; Califfi A; Dinacci D; Petrillo C; Rossi P; Conti FM; Gassert R
    J Neuroeng Rehabil; 2014 Nov; 11():154. PubMed ID: 25399249
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.
    Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL
    J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation: results of a three-armed randomized controlled trial for chronic stroke.
    Ang KK; Guan C; Phua KS; Wang C; Zhou L; Tang KY; Ephraim Joseph GJ; Kuah CW; Chua KS
    Front Neuroeng; 2014; 7():30. PubMed ID: 25120465
    [TBL] [Abstract][Full Text] [Related]  

  • 38. BCI Training Effects on Chronic Stroke Correlate with Functional Reorganization in Motor-Related Regions: A Concurrent EEG and fMRI Study.
    Yuan K; Chen C; Wang X; Chu WC; Tong RK
    Brain Sci; 2021 Jan; 11(1):. PubMed ID: 33418846
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Double ErrP Detection for Automatic Error Correction in an ERP-Based BCI Speller.
    Cruz A; Pires G; Nunes UJ
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):26-36. PubMed ID: 28945598
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a robust asynchronous brain-switch using ErrP-based error correction.
    Yousefi R; Rezazadeh Sereshkeh A; Chau T
    J Neural Eng; 2019 Nov; 16(6):066042. PubMed ID: 31571608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.