These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 35548781)
41. Using ipsilateral motor signals in the unaffected cerebral hemisphere as a signal platform for brain-computer interfaces in hemiplegic stroke survivors. Bundy DT; Wronkiewicz M; Sharma M; Moran DW; Corbetta M; Leuthardt EC J Neural Eng; 2012 Jun; 9(3):036011. PubMed ID: 22614631 [TBL] [Abstract][Full Text] [Related]
42. Towards the Classification of Error-Related Potentials using Riemannian Geometry. Tang Y; Zhang JJ; Corballis PM; Hallum LE Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5905-5908. PubMed ID: 34892463 [TBL] [Abstract][Full Text] [Related]
43. A Single-Session Preliminary Evaluation of an Affordable BCI-Controlled Arm Exoskeleton and Motor-Proprioception Platform. Elnady AM; Zhang X; Xiao ZG; Yong X; Randhawa BK; Boyd L; Menon C Front Hum Neurosci; 2015; 9():168. PubMed ID: 25870554 [TBL] [Abstract][Full Text] [Related]
44. Sensorimotor Rhythm-Brain Computer Interface With Audio-Cue, Motor Observation and Multisensory Feedback for Upper-Limb Stroke Rehabilitation: A Controlled Study. Li X; Wang L; Miao S; Yue Z; Tang Z; Su L; Zheng Y; Wu X; Wang S; Wang J; Dou Z Front Neurosci; 2022; 16():808830. PubMed ID: 35360158 [TBL] [Abstract][Full Text] [Related]
45. Brain-Computer Interfaces With Multi-Sensory Feedback for Stroke Rehabilitation: A Case Study. Irimia DC; Cho W; Ortner R; Allison BZ; Ignat BE; Edlinger G; Guger C Artif Organs; 2017 Nov; 41(11):E178-E184. PubMed ID: 29148137 [TBL] [Abstract][Full Text] [Related]
46. Technology-assisted stroke rehabilitation in Mexico: a pilot randomized trial comparing traditional therapy to circuit training in a Robot/technology-assisted therapy gym. Bustamante Valles K; Montes S; Madrigal Mde J; Burciaga A; Martínez ME; Johnson MJ J Neuroeng Rehabil; 2016 Sep; 13(1):83. PubMed ID: 27634471 [TBL] [Abstract][Full Text] [Related]
47. Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis. Vourvopoulos A; Bermúdez I Badia S J Neuroeng Rehabil; 2016 Aug; 13(1):69. PubMed ID: 27503007 [TBL] [Abstract][Full Text] [Related]
48. Error-related EEG potentials generated during simulated brain-computer interaction. Ferrez PW; del R Millan J IEEE Trans Biomed Eng; 2008 Mar; 55(3):923-9. PubMed ID: 18334383 [TBL] [Abstract][Full Text] [Related]
49. Classification of error-related potentials from single-trial EEG in association with executed and imagined movements: a feature and classifier investigation. Usama N; Kunz Leerskov K; Niazi IK; Dremstrup K; Jochumsen M Med Biol Eng Comput; 2020 Nov; 58(11):2699-2710. PubMed ID: 32862336 [TBL] [Abstract][Full Text] [Related]
50. Effect of BCI-Controlled Pedaling Training System With Multiple Modalities of Feedback on Motor and Cognitive Function Rehabilitation of Early Subacute Stroke Patients. Yuan Z; Peng Y; Wang L; Song S; Chen S; Yang L; Liu H; Wang H; Shi G; Han C; Cammon JA; Zhang Y; Qiao J; Wang G IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2569-2577. PubMed ID: 34871175 [TBL] [Abstract][Full Text] [Related]
51. Design, development, and evaluation of an interactive personalized social robot to monitor and coach post-stroke rehabilitation exercises. Hun Lee M; Siewiorek DP; Smailagic A; Bernardino A; Bermúdez I Badia S User Model User-adapt Interact; 2023; 33(2):545-569. PubMed ID: 37123108 [TBL] [Abstract][Full Text] [Related]
52. Brain Computer Interface based robotic rehabilitation with online modification of task speed. Sarac M; Koyas E; Erdogan A; Cetin M; Patoglu V IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650423. PubMed ID: 24187241 [TBL] [Abstract][Full Text] [Related]
53. Prediction Deviants with Varying Degrees Induce Separable Error-related EEG Features. Meng J; Liu J; Wang H; Xu M; Ming D Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6671-6674. PubMed ID: 34892638 [TBL] [Abstract][Full Text] [Related]
54. Changes in EEG Brain Connectivity Caused by Short-Term BCI Neurofeedback-Rehabilitation Training: A Case Study. Wang Y; Luo J; Guo Y; Du Q; Cheng Q; Wang H Front Hum Neurosci; 2021; 15():627100. PubMed ID: 34366808 [TBL] [Abstract][Full Text] [Related]
55. Taking a lesson from patients' recovery strategies to optimize training during robot-aided rehabilitation. Colombo R; Sterpi I; Mazzone A; Delconte C; Pisano F IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):276-85. PubMed ID: 22623406 [TBL] [Abstract][Full Text] [Related]
56. A robot goes to rehab: a novel gamified system for long-term stroke rehabilitation using a socially assistive robot-methodology and usability testing. Feingold-Polak R; Barzel O; Levy-Tzedek S J Neuroeng Rehabil; 2021 Jul; 18(1):122. PubMed ID: 34321035 [TBL] [Abstract][Full Text] [Related]
57. Omitting the intra-session calibration in EEG-based brain computer interface used for stroke rehabilitation. Arvaneh M; Guan C; Ang KK; Quek C Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4124-7. PubMed ID: 23366835 [TBL] [Abstract][Full Text] [Related]
58. A small, portable, battery-powered brain-computer interface system for motor rehabilitation. McCrimmon CM; Ming Wang ; Silva Lopes L; Wang PT; Karimi-Bidhendi A; Liu CY; Heydari P; Nenadic Z; Do AH Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2776-2779. PubMed ID: 28324971 [TBL] [Abstract][Full Text] [Related]