These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 35548833)

  • 1. Direct characterization of ion implanted nanopore pyrolytic graphite coatings for molten salt nuclear reactors.
    Zhang H; Lei Q; Song J; Liu M; Zhang C; Gao Y; Zhang W; Xia H; Liu X
    RSC Adv; 2018 Sep; 8(59):33927-33938. PubMed ID: 35548833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoindentation Study on the Creep Characteristics and Hardness of Ion-Irradiated Alloys.
    Zhu Z; Huang H; Liu J; Ye L; Zhu Z
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32674338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical Properties of Pyrolytic Carbon Films Versus Graphite and Graphene.
    Dovbeshko GI; Romanyuk VR; Pidgirnyi DV; Cherepanov VV; Andreev EO; Levin VM; Kuzhir PP; Kaplas T; Svirko YP
    Nanoscale Res Lett; 2015 Dec; 10(1):946. PubMed ID: 26055479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TEM investigation on the microstructural evolution of Hastelloy N induced by Ar⁺ ion irradiation.
    Liu M; Lu Y; Liu R; Zhou X
    Microsc Res Tech; 2014 Feb; 77(2):161-9. PubMed ID: 24285574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen adsorption data, FIB-SEM tomography and TEM micrographs of neutron-irradiated superfine grain graphite.
    Arregui-Mena JD; Contescu CI; Campbell AA; Edmondson PD; Gallego NC; Smith QB; Takizawa K; Katoh Y
    Data Brief; 2018 Dec; 21():2643-2650. PubMed ID: 30761347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of Microstructure and Nanoindentation Hardness of C
    Liu G; Li Y; He Z; Chen Y; Cong S; Chen Z; Huang X; Zhang R; Ran G
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33291352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Stress on Irradiation Responses of Highly Oriented Pyrolytic Graphite.
    Hu Z; Chen D; Kim S; Chauhan R; Li Y; Shao L
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacial microstructure and mechanical properties of C
    Li S; Qi L; Zhang T; Ju L; Li H
    Micron; 2017 Oct; 101():170-176. PubMed ID: 28763734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dataset on the mechanical property of graphite after molten FLiNaK salt infiltration.
    Zhang C; Tang H; He Z; Song J; Gao Y
    Data Brief; 2018 Dec; 21():1963-1969. PubMed ID: 30510984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disorder in H
    Venosta L; Bajales N; Suárez S; Bercoff PG
    Beilstein J Nanotechnol; 2018; 9():2708-2717. PubMed ID: 30416922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of silicon monoxide-pyrolytic carbon-carbon nanofiber composites and their hybridization with natural graphite as a means of improving the anodic performance of lithium-ion batteries.
    Park TH; Yeo JS; Jang SM; Miyawaki J; Mochida I; Yoon SH
    Nanotechnology; 2012 Sep; 23(35):355601. PubMed ID: 22895198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Edge plane pyrolytic graphite as a sensing surface for the determination of fluvoxamine in urine samples of obsessive-compulsive disorder patients.
    Bishnoi S; Sharma A; Singhal R; Goyal RN
    Biosens Bioelectron; 2020 Nov; 168():112489. PubMed ID: 32882472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of edge- and basal-plane pyrolytic graphite electrodes towards the sensitive determination of hydrocortisone.
    Goyal RN; Chatterjee S; Rana AR
    Talanta; 2010 Nov; 83(1):149-55. PubMed ID: 21035656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macro-, Micro- and Nano-Roughness of Carbon-Based Interface with the Living Cells: Towards a Versatile Bio-Sensing Platform.
    Golubewa L; Rehman H; Kulahava T; Karpicz R; Baah M; Kaplas T; Shah A; Malykhin S; Obraztsov A; Rutkauskas D; Jankunec M; Matulaitienė I; Selskis A; Denisov A; Svirko Y; Kuzhir P
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32899745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tribological and Mechanical Behavior of Graphite Composites of Polytetrafluoroethylene (PTFE) Irradiated by the Electron Beam.
    Barylski A; Swinarew AS; Aniołek K; Kaptacz S; Gabor J; Stanula A; Waśkiewicz Z; Knechtle B
    Polymers (Basel); 2020 Jul; 12(8):. PubMed ID: 32731329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of 10 MeV electron irradiation at high temperature of a Ni-Mo-based Hastelloy.
    Wanderka N; Bakai A; Abromeit C; Isheim D; Seidman DN
    Ultramicroscopy; 2007 Sep; 107(9):786-90. PubMed ID: 17403580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopy (Raman, XPS, and GDMS) and XRD analysis for studying the interaction between nuclear grade graphite and molten 2LiF-BeF
    Wu H; Carotti F; Gakhar R; Scarlat RO
    Data Brief; 2018 Oct; 20():1816-1821. PubMed ID: 30294629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of Morphological, Structural, and Strength Properties of Model Prototypes of New Generation TRISO Fuels.
    Kenzhina I; Blynskiy P; Kozlovskiy A; Begentayev M; Askerbekov S; Zaurbekova Z; Tolenova A
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Fe-Ions Irradiation on the Microstructure and Mechanical Properties of FeCrAl-1.5wt.% ZrC Alloys.
    Wang R; Wang H; Zhu X; Liang X; Li Y; Gao Y; An X; Liu W
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between nuclear graphite and molten fluoride salts: a synchrotron radiation study of the substitution of graphitic hydrogen by fluoride ion.
    Yang X; Feng S; Zhou X; Xu H; Sham TK
    J Phys Chem A; 2012 Jan; 116(3):985-9. PubMed ID: 22251280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.