These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 35548871)
1. Construction of Ag nanowire@Au nanoparticle nano nests with densely stacked small gaps for actively trapping molecules to realize diversity SERS detection. Xie T; Li P; Ge M; Chen S; Huang G; Li J; Gong M; Weng S; Yang L Analyst; 2022 May; 147(11):2541-2548. PubMed ID: 35548871 [TBL] [Abstract][Full Text] [Related]
2. Highly sensitive immunoassay based on SERS using nano-Au immune probes and a nano-Ag immune substrate. Shu L; Zhou J; Yuan X; Petti L; Chen J; Jia Z; Mormile P Talanta; 2014 Jun; 123():161-8. PubMed ID: 24725879 [TBL] [Abstract][Full Text] [Related]
3. Single nanowire on a film as an efficient SERS-active platform. Yoon I; Kang T; Choi W; Kim J; Yoo Y; Joo SW; Park QH; Ihee H; Kim B J Am Chem Soc; 2009 Jan; 131(2):758-62. PubMed ID: 19099471 [TBL] [Abstract][Full Text] [Related]
4. Extralong hot-spots sensor for SERS sensitive detection of phthalate plasticizers in biological tear and serum fluids. Xu Z; Luan L; Li P; Dong K Anal Bioanal Chem; 2024 Aug; 416(19):4301-4313. PubMed ID: 38852120 [TBL] [Abstract][Full Text] [Related]
5. Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density "hot spots" for surface-enhanced Raman scattering. Chen M; Phang IY; Lee MR; Yang JK; Ling XY Langmuir; 2013 Jun; 29(23):7061-9. PubMed ID: 23706081 [TBL] [Abstract][Full Text] [Related]
6. A chemical route to increase hot spots on silver nanowires for surface-enhanced Raman spectroscopy application. Goh MS; Lee YH; Pedireddy S; Phang IY; Tjiu WW; Tan JM; Ling XY Langmuir; 2012 Oct; 28(40):14441-9. PubMed ID: 22970778 [TBL] [Abstract][Full Text] [Related]
7. Single gold nanowire-based nanosensor for adenosine triphosphate sensing by using in-situ surface-enhanced Raman scattering technique. Zhu Y; Qiu X; Chen X; Huang M; Li Y Talanta; 2022 Nov; 249():123675. PubMed ID: 35716474 [TBL] [Abstract][Full Text] [Related]
8. The characteristic Ag(core)Au(shell) nanoparticles as SERS substrates in detecting dopamine molecules at various pH ranges. Bu Y; Lee SW Int J Nanomedicine; 2015; 10 Spec Iss(Spec Iss):47-54. PubMed ID: 26345418 [TBL] [Abstract][Full Text] [Related]
9. Large-scale homogeneously distributed Ag-NPs with sub-10 nm gaps assembled on a two-layered honeycomb-like TiO2 film as sensitive and reproducible SERS substrates. Hu X; Meng G; Huang Q; Xu W; Han F; Sun K; Xu Q; Wang Z Nanotechnology; 2012 Sep; 23(38):385705. PubMed ID: 22948006 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of silver-coated gold nanoparticles to simultaneously detect multi-class insecticide residues in peach with SERS technique. Yaseen T; Pu H; Sun DW Talanta; 2019 May; 196():537-545. PubMed ID: 30683402 [TBL] [Abstract][Full Text] [Related]
11. Rapid detection of multiple organophosphorus pesticides (triazophos and parathion-methyl) residues in peach by SERS based on core-shell bimetallic Au@Ag NPs. Yaseen T; Pu H; Sun DW Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2019 May; 36(5):762-778. PubMed ID: 30943113 [TBL] [Abstract][Full Text] [Related]
12. Influence of dopamine concentration and surface coverage of Au shell on the optical properties of Au, Ag, and Ag(core)Au(shell) nanoparticles. Bu Y; Lee S ACS Appl Mater Interfaces; 2012 Aug; 4(8):3923-31. PubMed ID: 22833686 [TBL] [Abstract][Full Text] [Related]
13. Quantitative SERS sensor based on self-assembled Au@Ag heterogeneous nanocuboids monolayer with high enhancement factor for practical quantitative detection. Li J; Wang Q; Wang J; Li M; Zhang X; Luan L; Li P; Xu W Anal Bioanal Chem; 2021 Jul; 413(16):4207-4215. PubMed ID: 33987702 [TBL] [Abstract][Full Text] [Related]
14. Ordered arrays of Au-nanobowls loaded with Ag-nanoparticles as effective SERS substrates for rapid detection of PCBs. Chen B; Meng G; Zhou F; Huang Q; Zhu C; Hu X; Kong M Nanotechnology; 2014 Apr; 25(14):145605. PubMed ID: 24633265 [TBL] [Abstract][Full Text] [Related]
15. The Effect of Nanoparticle Composition on the Surface-Enhanced Raman Scattering Performance of Plasmonic DNA Origami Nanoantennas. Kanehira Y; Tapio K; Wegner G; Kogikoski S; Rüstig S; Prietzel C; Busch K; Bald I ACS Nano; 2023 Nov; 17(21):21227-21239. PubMed ID: 37847540 [TBL] [Abstract][Full Text] [Related]
16. 3D aluminum/silver hierarchical nanostructure with large areas of dense hot spots for surface-enhanced raman scattering. Zhao N; Li H; Xie Y; Feng Z; Wang Z; Yang Z; Yan X; Wang W; Tian C; Yu H Electrophoresis; 2019 Dec; 40(23-24):3123-3131. PubMed ID: 31576580 [TBL] [Abstract][Full Text] [Related]
17. Preparation of Au@Ag core-shell nanoparticle decorated silicon nanowires for bacterial capture and sensing combined with laser induced breakdown spectroscopy and surface-enhanced Raman spectroscopy. Liao W; Lin Q; Xu Y; Yang E; Duan Y Nanoscale; 2019 Mar; 11(12):5346-5354. PubMed ID: 30848272 [TBL] [Abstract][Full Text] [Related]
18. Wrinkle-bioinspired silver nanowire surface enhanced Raman scattering sensors for pesticide molecule detection. Deng X; Wang S; Zhou W; Xu M; Chen B; Zhang W Anal Bioanal Chem; 2023 Jul; 415(16):3255-3264. PubMed ID: 37071141 [TBL] [Abstract][Full Text] [Related]
19. Silver overlayer-modified surface-enhanced Raman scattering-active gold substrates for potential applications in trace detection of biochemical species. Ou KL; Hsu TC; Liu YC; Yang KH; Tsai HY Anal Chim Acta; 2014 Jan; 806():188-96. PubMed ID: 24331055 [TBL] [Abstract][Full Text] [Related]
20. Highly sensitive SERS substrates with multi-hot spots for on-site detection of pesticide residues. Xie T; Cao Z; Li Y; Li Z; Zhang FL; Gu Y; Han C; Yang G; Qu L Food Chem; 2022 Jul; 381():132208. PubMed ID: 35123223 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]